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ABSTRACT

To improve the economics of commercial nuclear power production, utilities are seeking to increase
the allowable burnup limit of UO2 fuel. One of the main factors that contributes to the current burnup
limit of 62 GWd/MTU in commercial light-water reactors (LWRs) is the risk of fine fragmentation or
pulverization during a loss of coolant accident (LOCA). Pulverization primarily occurs at high burnups,
especially when the high-burnup structure (HBS) has formed. To allow the industry to pursue increased
burnup and develop mitigation strategies, it is essential to have improved capability to predict the on-
set of pulverization. However, the mechanism of pulverization is not well understood, and the existing
predictive capabilities implemented in the BISON fuel performance code are empirical in nature.

In this report, mesoscale simulations are used to improve understanding of the formation mecha-
nism of the HBS and how it responds during a LOCA transient, and inform development of a BISON
pulverization criterion. A phase-field model was used to simulate the evolution of bubble pressure as
a result of HBS formation. The simulations showed that gas atoms diffuse from grain interiors to the
new grain boundaries created during HBS formation and diffuse rapidly along these grain boundaries to
reach existing bubbles. This causes an increase in bubble pressure in existing bubbles, leading to bubble
growth during steady-state operation. To simulate the response of HBS bubbles to a LOCA transient,
a newly developed phase-field model was used; in agreement with preliminary results from Fiscal Year
2020, bubble size did not change significantly during the duration of the transient. A phase-field fracture
model was used to study fragmentation patterns in the HBS. Phase-field fracture simulations were used
to determine a pulverization criterion for BISON. A function for the critical pressure for pulverization to
occur was fit to data from the phase-field fracture simulations, and this function was implemented as a
material property in BISON. For comparison, an analytical criterion for pulverization was developed and
implemented within the same material property.
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1 INTRODUCTION

In order to improve the economics of commercial nuclear energy production, U.S. fuel vendors and utilities
are seeking to increase the burnup limit of pellet-form UO2 fuel for commercial light-water reactors (LWRs)
from 62 GWd/MTU to as high as 75 GWd/MTU [1]. To gain approval for such an increase, vendors must
demonstrate that fuel rods retain their safety aspects in the event of design-basis accidents. One significant
challenge in increasing the burnup limit is to demonstrate safety in the case of a loss-of-coolant accident
(LOCA). During a LOCA, fuel with higher burnup can fragment into very small pieces (a process sometimes
referred to as pulverization) [2, 3]. In the event of a cladding rupture during the LOCA, these small fragments
(with diameters of less than 100 �m [4]) could redistribute within the fuel rod or escape to the coolant in the
event of a cladding burst. To allow LWR fuel to be licensed to higher burnups, the cause of this pulverization
phenomenon must be better understood and mitigation strategies must be developed.

Although the cause of pulverization is not fully understood, it has been linked with the formation of the
high-burnup structure (HBS) in UO2 [4]. The formation of the HBS is itself not well understood, but it results
in two main changes in the fuel microstructure. The first is the formation of a finer grain structure through a
process of recrystalliation or polygonization [5]. This results in a decrease from typical as-fabricated grain
sizes of 5–10 �m to much smaller sizes of 100–300 nm. At the same time, larger fission gas bubbles form
with diameters on the order of 1 �m, with many of the new, smaller grains intersecting each bubble. These
larger bubbles are believed to be significantly overpressurized with fission gases relative to the equilibrium
pressure [6]. At the same time, fission gas is depleted in the fuel matrix surrounding the bubbles [7].

Although pulverization has sometimes been observed in regions where HBS formation is not fully com-
plete [4], based on the more consistent observations of pulverization in the presence of the HBS, we focus
here on pulverization in the presence of a fully formed HBS. During a LOCA transient, a rapid increase in
temperature occurs, causing an increase in pressure in the already overpressurized bubbles in the HBS re-
gion. It has been hypothesized that this rapid increase in pressure induces stresses in the surrounding matrix
that are high enough to cause fracture along the grain or subgrain boundaries that intersect the large bub-
bles in the HBS region, leading to fine fragmentation. Although the mechanism of pulverization is not fully
understood, because of its importance to fuel performance, an empirical criterion for pulverization has been
implemented in Idaho National Laboratory’s (INL’s) fuel performance code, BISON, based on experimental
data [4]. However, to provide a predictive capability outside the conditions in which these experiments were
conducted, a mechanistic criterion for pulverization that accounts for the microstructure of the fuel is desired.

In this report, mesoscale simulations aimed at informing a mechanistic criterion for pulverization are
described. The outline of the report is as follows. In Section 2, a phase-field model based on a grand
potential functional is used to study the formation and evolution of the HBS and the evolution of bubbles
and gas bubble pressure following the formation of the HBS. The model used is a phase-field model that
can account for multiple grains of the fuel matrix, the bubble phase, and the restructuring of the grains that
results in decreasing grain size. The model has been parameterized using atomistic calculations, including
the diffusivities of defect species. The model was used to simulate the evolution of bubbles just after the
formation of the HBS. These simulations showed that gas atoms that are initially supersaturated in the fuel
grains are transported to the newly formed grain boundaries. These grain boundaries then rapidly transport
some gas atoms to existing bubbles, causing growth of existing bubbles, while other gas atoms form new
bubbles. The bubble pressure in the existing bubbles increases, leading to bubble growth.

In Section 3, a phase-field model is employed to study the response of the gas bubbles to a LOCA
transient, as well as steady-state growth. A preliminary version of the model was described in Fiscal Year
(FY) 2020. This model is based on the Kim-Kim-Suzuki phase field model. It accounts for the gas bubble
pressure and the bubble-matrix surface tension on the stress state of the surrounding fuel. The current version
of the model only allows consideration of a single grain of the fuel matrix, unlike the model used in Section
2; however, the model may be extended to consider multiple grains in the future. In this report, the model’s
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behavior is verified through comparison with the analytical solution for the stress state in the fuel matrix
surrounding underpressurized, overpressurized, and equilibrium bubbles. The model is used to simulate
steady-state growth in bubbles in the HBS region, as well as the response of bubbles to LOCA transients.
In agreement with preliminary results from FY-20, the bubbles do not change size significantly during the
duration of a LOCA transient. This simplifies phase-field fracture simulations described in the next section
because the fracture model does not need to simultaneously account for bubble size change.

Phase-field fracture simulations are used to understand the fracture behavior during LOCA transients in
Section 4. The model employed accounts for the pressure in the gas bubble, which propagates along the
opening crack face. The model is used to demonstrate the importance of multi-bubble interactions, sug-
gesting that such multi-bubble interactions should be considered when determining a pulverization criterion.
The model is capable of simulating fracture in regions where the HBS is only partially formed, using mi-
crostructures generated from the model of Section 2 as input. Simulations using this model with periodic
boundary conditions to account for multi-bubble interactions are used to generate data for a mechanistic
model of pulverization for BISON.

The implementation of the mechanistic model of pulverization in BISON is described in Section 5. The
model calculates the current pressure of the most frequently observed bubble size in the HBS region. It
calculates the critical pressure for pulverization using either an analytical model or a model based on a fit to
the phase-field fracture data described in Section 4. Pulverization is deemed to occur if the current bubble
pressure is greater than the critical pressure. Finally, in Section 6, the main conclusions are highlighted and
directions for future work are suggested.
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2 HBS FORMATION AND BUBBLE GROWTH

In UO2 fuel, regions exposed to high burnup and low temperatures exhibit a fine-grained microstructure with
large bubbles known as high burnup structure (HBS). The key characteristics of the region include a) accu-
mulation of dislocations leading to creation of large dislocation networks, b) recrystallization of new defect
free sub-grains, c) depletion of intra-granular fission gas concentration, and d) formation of large spheri-
cal inter-granular bubbles [5]. Understanding the HBS formation and its impact on the thermo-mechanical
properties of the nuclear fuel is very important to evaluate the performance of the fuel. This region is also
known to be prone to fragmentation and even pulverization, especially during LOCA scenarios.

Pulverization has been noticed in partially and fully recrystallized high-burnup regions. Although the
reason behind pulverization is not fully understood, it has been attributed to fine grained structures with
high-pressure bubbles. With recrystallization, GB density in the fuel increases, which weakens the fracture
strength leading to fuel fragmentation. In order to predict the fragmentation criteria, it is paramount to
appropriately predict the HBS formation and associated bubble growth and pressure evolution.

The phase-field modeling approach is utilized to investigate the mechanisms facilitating the creation of
such a structure. In previous years, a recrystallization model was developed to capture the HBS formation
and the contribution of various defect species leading to creation of larger bubbles as observed in the HBS
structures [8, 9]. It was demonstrated that the model can capture concurrent recrystallization and associated
bubble evolution in nuclear fuels. It was observed that bubble growth accelerates after completion of the
HBS formation rather than during. This year the primary focus has been on parameterizing the model with
appropriate LWR conditions and utilizing athermal irradiation-enhanced material properties to improve the
predictability of the model. Additionally, associated bubble pressure is calculated from these simulations to
provide input for initial bubble pressure for LOCA transient simulations.

In this section, we provide a brief account of the grand potential-based bubble evolution model with
details about the parameterization for LWR conditions. We also summarize the material properties and irra-
diation conditions available in literature that are used in the model. The model accounts for existing fission
gas bubbles and concurrently tracks the concentration of defects, such as vacancies and gas atoms, leading to
further bubble growth and pressure increase. Additionally, it considers the role of defect sources, recombina-
tion of defects, various diffusion mechanisms, and activation paths contributing to formation of new bubbles
and coalescence of smaller bubbles into the larger ones. The model predicts growth of existing bubbles and
formation of new intergranular as well as intra-granular bubbles. Some of these bubbles physically appear
at a lower length scale which presents numerical challenges for the mesoscale simulations. We briefly talk
about the challenges faced, mitigation strategies adopted, and future improvements to be made.

2.1 Phase-field Model Formulation
The HBS bubble growth model presented in this section is formulated based on the grand-potential-based
multi-order multi-component phase-field model. The model is capable of capturing the evolution of multiple
phases, grains, and chemical species concurrently. It has previously been applied to model phase separation,
solidification, and sintering of complex alloy systems [10, 11, 12, 13]. Recently, Aagesen et al. [14, 15]
applied the model to evaluate the bubble evolution in various nuclear materials. In FY-20, the model was
combined with the grain nucleation model to simulate the recrystallization and porosity evolution that pro-
duces the key characteristics of the HBS. Here, we primarily focus on utilizing the same model for bubble
growth and associated pressure buildup in bubbles within fine grained HBS.

In this model, the microstructure is considered to have two significant and distinguishable crystallo-
graphic features: solid matrix and bubble. Within the matrix, multiple grains are represented with different
order parameters, �m0, �m1, . . . �mi, . . . �mn, and the bubble is represented by a single order parameter, �b. Ad-
ditionally, local concentration of various defect species such as vacancies and fission gases are represented
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as chemical components; the number density of which are presented with �v and �g, respectively.

2.1.1 Grand potential functional
The evolution equations for the microstructure are derived from the total grand potential Ω of the system. It
is obtained from local grand potential density expressed in terms of the free energy density of the system as

Ω = ∫V

[

fbulk
(

�mi, �b
)

+ fd(�mi) + fgr(�mi, �b) + ℎb!b + ℎm!m
]

dV . (1)

Here, the bulk free energy density term (fbulk) ensures that a minimum in the free energy exists within
the interior of each grain and contributes to the interfacial energies between different phases/grains. The
gradient energy term (fgr) penalizes the gradients of the order parameters representing each grain/phase and
also contributes to the interfacial energies between different grains/phases. For capturing recrystallization,
the dislocation energy density (fd) for the deformation energy density due to dislocation pile up is taken into
account. For the current bubble growth model, the contribution of (fd) is set to zero. Finally, the fourth and
fifth terms add the appropriate grand potential density for each phase.

The bulk free energy density is defined as

fbulk = �

[(

�4b
4
−
�2b
2

)

+
nm
∑

i=1

(

�4mi
4
−
�2mi
2

)

+

(

bm
2
�2b

∑

i
�2mi +

nm
∑

i

nm
∑

i≠j

mm
2
�2mi�

2
mj

)

+ 1
4

]

(2)

where m and b represent the matrix and bubble phases, i and j are indices for the grains, nm is the total
number of grains, and � is a constant free energy barrier coefficient. mb and mm are constant parameters that
allow adjustment of interfacial energies between phases and grains. The model assumes isotropic interfacial
properties without consideration of inclination or misorientation dependence. (�4 ) is added to make the
homogeneous free energy density equal to 0 within grain interiors. The gradient free energy density is
expressed as

fgr =
�
2

(

|�b|
2 +

nm
∑

i=1
|∇�mi|2

)

, (3)

with � being the gradient energy coefficient.
In Equation 1, !m and !b are the local grand potential density of matrix and bubbles phases, and ℎm and

ℎb are the switching functions used for interpolating the grand potential density between the phases. For the
matrix and bubble phases, the switching functions are

ℎm =
∑nm
i=1 �

2
mi

�2b +
∑nm
i=1 �

2
mi

, (4)

and

ℎb =
�2b

�2b +
∑nm
i=1 �

2
mi

, (5)

respectively. The grand potential density for each phase is given by

!m = fm − �g�g − �v�v , (6)

and
!b = fb − �g�g − �v�v , (7)

where fm and fb are the Helmholtz free energies of each phase, and �g and �v are the chemical potentials of
the gas atoms and vacancies.
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2.1.2 Chemical free energy density
Assuming the chemical energy of the matrix follows the ideal solution model, the Helmholtz free energy
density is described as

fm,ideal =
1
Vm

{

RT [cv ln cv + (1 − cv) ln (1 − cv)] +NAE
f
v cv

+ RT [cg ln cg + (1 − cg) ln (1 − cg)] +NAE
f
g cg

}

,
(8)

where R is the ideal gas constant, Vm is the molar volume such that Vm = VaNA,NA is Avogadro’s number,
Va is the atomic volume, Ef

v is the formation energy of a U vacancy, Ef
g is the formation energy of a gas

(Xe) atom on a U lattice site, and T is the temperature. cv and cg represents the concentration of vacancies
and gas atoms in the matrix. To improve numerical performance, fm,ideal is approximated with a parabolic
function

fm =
1
2
kmv (cv − c

m,eq
v )2 + 1

2
kmg (cg − c

m,eq
g )2, (9)

where kmv and kmg are the curvatures of the parabolas and cm,eqv , and cm,eqg are the equilibrium concentration
of vacancies and gas atoms in the UO2 matrix. The equilibrium concentrations are determined from the
formation energies and temperature using cm,eqv = exp (−Ef

v ∕kBT ) and c
m,eq
g = exp (−Ef

g ∕kBT ), where kB
is the Boltzmann’s constant. The curvatures of the parabolas are set by assuming that when the vacancy
composition, cv, is equal to the steady-state vacancy composition during reactor operation, c0v , the chemical
potential determined from the parabolic approximation is equal to the chemical potential of the ideal solution
model as described in [14]. Since � = )f

)�
= )f

)c
)c
)�
= Va

)f
)c
,

Va
)fm
)cv

|

|

|

|c0v
= Va

)fm,ideal
)cv

|

|

|

|c0v
(10)

This leads to an expression for kmv ,

kmv =
1

(

c0v − c
m,eq
v

)

[

RT
Vm

[

ln c0v − ln (1 − c
0
v)
]

+
NAE

f
v

Vm

]

(11)

Here, c0v is chosen based on cluster dynamics simulations, as described further in Section 2.1.6. For c0v =
0.01, kmv varies linearly with temperature such that kmv = 7335 eV∕nm3 − 0.9682 T eV∕nm3∕K. Simi-
larly, for the the gas atoms, the parabola curvature is estimated by equating the chemical potentials ob-
tained from the ideal solution model to the value obtained from the parabolic approximations for the ma-
trix gas concentration prior to HBS formation. Following Equation 11, for c0g = 0.02 this yields kmg =
3667.5 eV∕nm3 − 0.41 T eV∕nm3∕K. This value of c0g is chosen based on the peak of intragranular Xe
concentration, which occurs at the onset of HBS formation, as discussed further in Section 2.1.4.

The bulk chemical free energy density of the gas bubble phase, fb, is determined by considering the gas
phase to be a mixture of U-site vacancies and Xe atoms as described in [14]. It is assumed that the van der
Waals gas equation of state applies to Xe [16], in which the gas atoms are assumed to have a hard-sphere
exclusion volume characterized by the parameter b, and we neglect long-range interactions due to the high
density of gas in the bubbles. For Xe, bg = 0.085 nm3/atom [16]. With these assumptions, the Helmholtz
free energy density of the gas is [17]

fb,vdW = ngkT

⎡

⎢

⎢

⎢

⎣

ln

⎛

⎜

⎜

⎜

⎝

1

nQ
(

1
ng
− bg

)

⎞

⎟

⎟

⎟

⎠

− 1

⎤

⎥

⎥

⎥

⎦

+ f0 , (12)
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where ng is the number density of gas atoms, nQ =
(

2�mkBT
ℎ2

)3∕2
is the quantum concentration, m is the

mass of a Xe atom, ℎ is the Planck constant, and f0 is the offset to ensure that the solid and gas free energies
are measured relative to the same reference state. ng can be expressed in terms of the model variables using
ng = cgnU , where nU = 1∕Va is the number density of U atoms in the UO2 lattice, such that cv + cg = 1
is maintained. f0 is determined by setting the minima of the gas and solid phase chemical free energies
to be equal. By solving the system for the temperature range 700 ≤ T ≤ 1300, f0 is fitted to be f0 =
4.9 × 10−3 T eV∕nm3∕K − 0.58 eV∕nm3.

To simplify the numerical calculations, the Helmholtz free energy of the gas phase is also approximated
utilizing a parabolic fit

fb =
1
2
kbv(cv − c

b,eq
v )2 + 1

2
kbg(cg − c

b,eq
g )2 (13)

The minimum of the parabolic free energy was set to occur at the minimum of the Van der Waals free energy.
Because composition in the gas bubbles will generally not deviate far from the minimum of the free energy,
kbv and k

b
g are set by assuming kbv = k

b
g and fitting to fb,vdW in the range 0.42 < cg < 0.47. kbv value can be

approximated as kbv = 0.2328 T eV∕nm
3∕K − 30.723 eV∕nm3.

Figure 1 provides the free energy density landscapes for both the species corresponding to temperatures
of 1000 K and 1200 K.

(a) (b)

Figure 1: Free energy density plots for vacancies and gas atoms at temperatures 1000 K (a), and 1200 K (b).

2.1.3 Governing equations
The evolution of the order parameters is captured using the Allen-Cahn equations. From the grand potential
functional of Equation (1), the evolution equations of the order parameters are derived as

)�mi
)t

= −L �Ω
��mi

)�b
)t

= −L�Ω
��b

(14)

where L is the kinetic mobility of the order parameters, and �Ω
��mi

and �Ω
��b

are the variational derivatives of Ω
with respect to order parameter �mi and �b, respectively.
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To evolve the gas and vacancy concentrations, it is more convenient to write the evolution equations in
terms of chemical potentials �v and �g and use the chemical potentials as the field variables rather than the
densities. To enable this, the grand potentials in each phase, Equations (6) - (7), must be expressed in terms
of �v and �g. For the matrix phase, the relation �g = Va

)fm,cℎem
)cg

= Vakmg (cg − c
m,eq
g ) can be re-arranged to

yield
cg =

�g
Vakmg

+ cm,eqg . (15)

Similarly, for the vacancies
cv =

�v
Vakmv

+ cm,eqv . (16)

Equations (15) – (16) can be used in conjunction with the relations �g =
cg
Va
, �v =

cv
Va

and Equations (6) and
(9) to obtain the grand potential density as a function of the chemical potentials rather than the concentrations

!m = −
1
2

�2v
V 2
a kmv

−
�v
Va
cm,eqv − 1

2

�2g
V 2
a kmg

−
�g
Va
cm,eqg . (17)

Similarly, the grand potential density of the bubble phase can be expressed as

!b = −
1
2
�2v
V 2
a kbv

−
�v
Va
cb,eqv − 1

2

�2g
V 2
a kbg

−
�g
Va
cb,eqg . (18)

The evolution equations for �g and �v are

)�g
)t

= 1
�g

[

∇ ⋅
(

Dg�g∇�g
)

+ sg −
)�g
)�b

)�b
)t

−
nm
∑

i=1

)�g
)�mi

)�mi
)t

]

(19)

)�v
)t

= 1
�v

[

∇ ⋅
(

Dv�v∇�v
)

+ sv −Dvkv�v −
)�v
)�b

)�b
)t

−
∑

�

p�
∑

i=1

)�v
)��i

)��i
)t

]

(20)

whereDg andDv are the diffusion coefficients, and sg and sv are the source terms for production of Xe atoms
and U site vacancies. �g and �v are the susceptibilities defined as

�g = ℎm
1

V 2
a kmg

+ ℎb
1

V 2
a kbg

(21)

�v = ℎm
1

V 2
a kmv

+ ℎb
1

V 2
a kbv

(22)

2.1.4 Diffusion coefficients
Diffusion of U-vacancies and U-substitutional Xe gas atoms play a pivotal role dictating the bubble growth
and pressure increase. For temperatures, at which HBS is dominant, the diffusion is usually athermal and
driven by irradiation. There is very limited data regarding the diffusion coefficients for vacancies and gas
atoms at low temperatures. Experimentally, effect of irradiation on the gas atoms is determined based on
the gas release behavior of UO2. Davies and Long [18] reported Dg = 7.6 × 10−10 exp (−3.04∕kBT ) m2/s
from their experimental study. Turnbull [19] demonstrated that diffusion behavior of Xe under irradiation
is a complex phenomenon involving multiple rate controlling mechanisms. Above 1400oC, they used the
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same intrinsic diffusion values as calculated by Davies and Long [18]. For lower temperature, an irradiation
enhanced diffusion coefficient ofD = 2× 10−40F m2/s is considered, where F is the neutron flux. Miekeley
and Felix studied the Xe diffusion in stochiometric UO2 during post irradiation annealing experiments. The
average diffusivity reported for UO2 is D0 exp (−3.9∕kBT ). Here, D0 varies from 5×10−2 to 5.0 cm2/s
within the temperature range of 950 oC to 1700oC. At 1200 K, this provides an approximate diffusivity value
of 0.0258 nm2/s. For the temperature range 600–1300oC, different stochiometry and diffusion values are
observed. The diffusivity in this case is D0 exp (−1.7∕kBT ), with D0 varying from 1×10−8 to 1.0×10−4
cm2/s. Matthews et al. [20] derived the diffusion values considering the mobilities of different Xe clusters.
The diffusivity values obtained from the cluster dynamics simulations are fitted as,

Dg = D1(T ) +D2(T , Ḟ ) +D3(Ḟ ) (23)

D1(T ) =
2.22 × 10−7 exp (−3.26∕kBT )
1 + 29.0 exp (−1.84∕kBT )

(24)

D2(T , Ḟ ) = 2.82 × 10−22 exp (−2.0∕kBT )
√

Ḟ (25)
D3(Ḟ ) = 8.5 × 10−40Ḟ (26)

where Dg is in unit of m2/s. For typical LWR fission rate density of 1.09 ×1019 fissions/m3-s and 1200
K temperature, the gas diffusion value is 1.75×10−20 m2/s or 0.0175 nm2/s. For 1100 K, 1000 K, 900 K
the values are 1.02 ×10−2, 9.35 ×10−3, 9.27 ×10−3 nm2/s, respectively. Below 900 K, athermal diffusion
dominates, and the diffusivity value of 9.27 ×10−3 nm2/s persists. For the phase field simulations, this Dg
value is used as the bulk diffusion coefficient for the gas atoms in the matrix. Enhanced diffusion coefficients
are used within the bubbles, along the grain boundaries and the bubble surfaces. Figure 2a compares the
cluster-dynamics data to the experimental values.

For capturing the gas concentration in matrix and bubbles, gas evolution in HBS has been studied exper-
imentally using the electron probe microanalysis (EPMA) technique. Spino [21] documented the Xe created
and retained in the matrix as burnup increases. Lassman also predicted Xe fraction evolution with burnup.
Figure 2b reproduces and compares the evolution of the Xe concentration with burnup predicted by differ-
ent researchers. The Xe-concentration in the matrix prior to HBS formation is 0.02 atomic fraction and the
steady-state concentration is observed to be 0.005. These values can be utilized to fit the parabola curva-
ture of the chemical free energy corresponding to gas atoms. This concentration plot is also used to select
appropriate gas supersaturation values in the matrix while setting up the initial conditions for the simulations.

750100012501500175020002250
Temperature (K)

10 4

10 1

102

105

108

D
iff

us
iv

ity
 (n

m
2 /s

) Mathews
Turnbull
Miekeley and Felix

(a)

0 25 50 75 100 125 150
Burnup (GWd/tU)

0.005

0.010

0.015

0.020

0.025

X
e 

C
on

ce
nt

ra
tio

n

Lassman
Xe Created-Spino
Xe Retained-Spino

(b)

Figure 2: (a) Diffusivity of Xe atoms in UO2. (b) Experimentally measured intragranular Xe concentration
in UO2 fuel matrix as a function of burnup.
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The diffusion coefficients for vacancies and other defects in UO2 determines the self diffusion of UO2.
The diffusion values obtained in the literature widely vary. Here, we present an account of the values avail-
able. Matzke [22] studied the irradiation enhanced diffusion of U in UO2. The diffusion coefficient is ob-
served to be independent of temperature and varies linearly with the fission rate, DU = 1.2 × 10−29Ḟ cm2/s.
For the fission rate density of 1.09 ×1019 fissions/m3-s, DU = 0.0131 nm2/s. Assuming the uranium diffu-
sion is driven by the vacancies only, the vacancy diffusivity can be estimated using Dv = DU∕�vcv0, where
�v = 0.781 is the correlation factor for vacancies. Thus the vacancy diffusion coefficient becomes 1.677
nm2/s for cv0 = 0.01 and 2.1 nm2/s for cv0 = 0.008. Later, Matzke [23] considered the effect of temperature
on the uranium self diffusion and reported a diffusivity of 0.65 exp (−5.6∕kBT )cm2∕s for T < 1500oC . In
the same work, effects of irradiation on the diffusion of vacancies and interstitials were studied. The reported
values areDvU = 2×10

−3 exp (−2.4∕kBT ) cm2/s andDUi = 1×10
−1 exp (−2.0∕kBT ) cm2/s. This indicates

that uranium interstitials are more mobile than the vacancies. At 1200 K, this yields the vacancy diffusion
value of 16.653 nm2/s. However, the diffusion coefficients obtained from the cluster dynamics simulations
are different from the experimental values. Figure 3 shows the diffusivities and concentrations of various de-
fect species. Since the diffusivity values vary by several order of magnitude between different defect clusters
and the model currently does not have the capability of directly utilizing these data, we use experimental dif-
fusion coefficients observed by Matzke and set the lower limit on the diffusivity at the irradiation enhanced
value of 1.677 nm2/s. The steady-state vacancy concentration in the matrix is considered as 0.01 atomic
fraction.
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Figure 3: Diffusion coefficients (a) and concentration (b) of various defects

Furthermore, enhanced diffusion along the GBs and bubble surfaces is considered to facilitate the species
transport in HBS. The diffusion of both vacancies and gas atoms follow the following relation

D = Dmℎm +Dbℎb + 30Ds�
2
b (1 − �b)

2 + 9Dgb
∑

i

∑

j≠i
�2mi�

2
mj (27)

where Dm is the bulk diffusion coefficient in the matrix, Db is the diffusion coefficient within bubbles, Ds
is the coefficient for surface diffusion, and Dgb is the coefficient of diffusion along grain boundaries. The
prefactors for the diffusion along various interfaces are chosen such that, ∫ 10 Dif (�i) d�i = Di, where Di
denotes the diffusivity along the interface (i.e., Ds or Dgb). Equation 27 is used to incorporate the effect of
different diffusion mechanisms in the model.
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2.1.5 Interfacial properties
Here, we describe the interfacial parameterization of the model for HBS formation in UO2 at 1200 K. The
energy density, length, and time scales used for non-dimensionalizing the model are 1 eV/nm3, 1 nm, and
1 sec, respectively. In general, the grain boundary energy of UO2 is considered to be �mm = 1.5 J/m2 or
9.363 eV/nm2. The interfacial energy between the matrix and gas bubble phase is considered to be same as
the grain boundary energy, �mb = �mm. This indicates a dihedral angle of 120◦ between the bubbles and the
grain boundaries. The interfacial properties are calculated assuming interface thickness lint = 10 nm. The
free energy coefficients are obtained as [24]

� =
6�mm
lint

, (28)

and
� = 3

4
�mmlint . (29)

The kinetic mobility is obtained as

L =
4MGB

3lint
, (30)

whereMGB is the grain boundary mobility:

MGB =M0 exp
(

− Q
kBT

)

, (31)

whereM0 = 9.21 × 10−9 m4/Js, Q = 3.01 eV [25], and kB is the Boltzmann constant. Table 1 summarizes
the model parameters with sample values for 1200 K.

2.1.6 Defect production and annihilation
The source term for the gas atoms is given by sg = sg0ℎm, where Sg0 is the constant Xe production rate, and
ℎm is the switching function which takes a value of 1 within the matrix and 0 inside the gas bubbles. The
switching function limits the Xe production to the grains. The constant Xe production rate is computed from
the fission rate such that sg0 = YXeḞ ; where Ḟ is the fission rate density, and YXe is the fission yield of Xe.
For typical LWR, Ḟ is estimated as 1.09×1019 fission/(m3-s), and YXe is 0.2156. Thus, the production rate
is 2.35×1018 atoms/m3-s or 2.35×10−9 atoms/nm3-s. The vacancy production rate sv is set at 20sg (i.e., 4.7
×10−8 atoms/nm3-s).

Since the current model does not track the interstitials, it ensures that the steady-state vacancy concen-
tration is maintained in the domain by introducing a vacancy sink term. This captures the essence of the
recombination of vacancies and interstitials and helps maintain the steady-state vacancy concentration in the
matrix. The sink strength is obtained from the steady-state conditions away from the large bubbles. At the
steady state, the phase-field variables, including the vacancy concentration and order parameters, remain
constant over time such that )�g

)t
= 0 and )��i

)t
= 0. Additionally, the vacancy concentration away from the

bubbles does not vary spatially, hence, ∇�g = 0. Substituting these values in Equation 20,

sv0 −Dvkv0�v0 = 0 (32)

kv0 =
sv0
Dv�v0

or
sv0Va
Dvcv0

(33)
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Parameter Formulation Value Source
T 1200 K
Va 0.04092 nm3 [26]
Ev
f 3 eV [14]

Eg
f 3 eV [14]

cm,eqv∕g exp
(

− Efv
kBT

)

2.515 ×10−13 Section 2.1.2
kmv 7335 eV∕nm3 − 0.9682 T eV∕nm3∕K 6173.17 eV/nm3 Section 2.1.2
kmg 3667.5 eV∕nm3 − 0.41 T eV∕nm3∕K 3175.5 eV/nm3 Section 2.1.2
cb,eqv 0.562 Section 2.1.2
cb,eqg 0.438 Section 2.1.2
kbv∕g 0.2328 T eV∕nm3∕K − 30.723 eV∕nm3 245 eV/nm3 Section 2.1.2
lint 10 nm
�mm 1.5 J/m2 or 9.363 eV/nm2

� 3
4�mmlint 1.125 ×10−8 J/m or 70.2 eV/nm Section 2.1.5

� 6�mm
lint

9 ×108 J/m3 or 5.62 eV/nm3 Section 2.1.5
f0 4.9 × 10−3 T eV∕nm3∕K − 0.58 eV∕nm3 5.316 eV/nm3 Section 2.1.2
G 64.1 GPa [27]
MGB 9.21 × 10−9 exp

(

− 3.01
kBT

)

m4/Js 3.43 × 10−4 nm4/eV/s Section 2.1.5

L 4MGB
3lint

4.58 × 10−5 nm3/eV/s Section 2.1.5
Sg0 YXeḞ 2.35 × 10−9 atoms/nm3-s Section 2.1.6
Sv0 20Sg0 4.7 × 10−8 atoms/nm3-s Section 2.1.6
kv

sv0Va
Dvcv0

2.4 × 10−7 1
Dv

/nm3-s Section 2.1.6

Table 1: Parameters used for phase-field simulations of bubble evolution in HBS

The steady-state vacancy concentration considered in the simulation is 0.01 (this is only slightly higher than
the values obtained from the cluster dynamics simulations). Hence, the constant sink strength is obtained
as, 1.9223×10−7/Dv atoms/nm3-s. For cv0 = 0.008; the sink strength becomes 2.4×10−7/Dv. Similar to the
source terms, the vacancy sink term is also limited to the fuel matrix such that kv = ℎmkv0. The effect of
the sink term on the bubble growth is presented in the following section. It is note worthy here that the net
vacancy production rate remains constant in the simulation irrespective of the vacancy source terms. Hence,
higher vacancy source has not been considered in the model.

2.1.7 Computational details
For implementation and numerical solultion of the currentmodel, we utilize the open-source parallelMOOSE
framework. It is a fully coupled, fully implicit finite element solver with adaptive time stepping and adaptive
meshing capabilities. It utilizes the PETSc solver library and the vast finite element library from LibMesh.
For the 2D simulations presented here, the finite element meshes are comprised of four-node quadrilateral
elements (QUAD4). Meshes are generated with the internal MOOSE mesh generator and linear lagrange
shape functions are used for all the nonlinear variables. The system of nonlinear equations is solved with
the preconditioned Jacobian Free Newton-Krylov (PJFNK) [28] method. We employ the additive Schwarz
method (ASM) for preconditioning and iterative LU factorization for sub-preconditioning. The simulations
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are solved with a linear tolerance of 1 × 10−3, nonlinear relative tolerance of 1 × 10−6, and a nonlinear abso-
lute tolerance of 1 × 10−8. Automatic residual scaling is utilized to minimize any disparities in the residual
norms of corresponding to different nonlinear variables. For the time integration, an implicit time integra-
tion scheme with second order backward differentiation formula (BDF2) is employed. Furthermore, adaptive
meshing and time stepping schemes were used to reduce the computational cost. The mesh is refined around
the interface and coarsened in the other areas. This is achieved by refining the mesh in regions of high cur-
vature in the order parameter fields with the help of a gradient jump indicator scheme [29] within MOOSE.
The element sizes vary between 6.25 nm to 50.0 nm with three levels of mesh refinement/coarsening. Fur-
ther mesh refinement did not impact the microstructural evolution. This adaptive meshing scheme allows us
to appropriately resolve the interface without significantly increasing the computational cost. Additionally,
an iteration-based time adaptivity scheme is employed to increase the time step, based on the number of
iterations required to solve the coupled equation system. The optimal iteration window of 6±1 is adopted.
Periodic boundary conditions are used to eliminate any boundary effect on the solution.

2.2 Results and Discussion
We have performed several 2D simulations to evaluate the defect interaction and bubble growth in the HBS
structure. Here, we consider the bubble growth in completely recrystallized HBS. A representative mi-
crostructure with periodic boundary conditions is created with Voronoi tessellation with randomly specified
existing bubbles. The simulation domain size is 1.25 �m × 1.25�m. The simulation domain is initialized
with 100 grains of 100 nm size and a single bubble with varying radii of 100 nm, 150 nm, and 200 nm
corresponding to approximately 2%, 4.5%, and 8% porosity, respectively. These porosity values are selected
based on experimental porosity observed in regions adjacent to HBS locations [30]. We postulate that the
microstructure in this region resembles the representative fuel microstructure prior to and at the initial re-
crystallization stage. The initial conditions created for this set of simulations are provided in Figure 4.

(a) (b) (c)

Figure 4: Sample initial HBS structure created with Voronoi tessellation with 100 nm (a), 150 nm (b) and
200 nm (c) bubble.

At the initial condition, the bubble is considered to maintain equilibrium pressure, determined by the
Gibbs-Thomson condition, Peq = 2st∕r, where st is the surface tension and r is the bubble radius. Assuming
st =  , equilibrium pressures for the bubble sizes considered are 30 MPa, 20 MPa, and 15 MPa. The initial
gas concentration within the bubble is estimated from the van der Waals equation of state,

Pg =
cgkBT
Ω − cgb

. (34)
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Thus, at 1200 K, the initial gas concentration within the bubble is set at 0.0642, 0.0448, 0.0344 for the 100
nm, 150 nm, and 200 nm bubble, respectively. Corresponding vacancy concentration within the bubble is
set, such that cv = 1 − cg. The matrix is initialized with a gas super saturation of 0.02 atomic fraction and
vacancy concentration at the steady-state value. In addition, we consider enhanced gas and vacancy diffusion
within bubbles and along interfaces. Since the physical diffusion values in the different interfacial regions
are not known, we set Dvb = 1000Dvm , Dvs = 100Dvm , DvGB = 100Dvm for vacancies and Dgb = 10

6Dgm ,
Dgs = 10

5Dgm ,DgGB = 10
5Dgm for gas atoms. Different enhancement factors are used so that both vacancies

and gas atoms have diffusivities in the same order of magnitude except in the matrix. It was previously noted
that these diffusion enhancement factors influence formation of new bubbles vs. growth of existing bubbles
in the HBS regions [9]. The competition and combination of diffusion of different species is responsible for
bubble growth and associated pressure increase in the HBS. Increase in vacancy concentration within bubbles
leads to growth of the bubbles, whereas the increase in gas concentration increases the bubble pressure.
With the current values, the model is able to capture growth of existing bubbles and formation of new inter-
granular and intra-granular bubbles concurrently while limiting numerical issues. Figure 5 shows the bubble
evolution over time for the 100 nm bubble. At the initial stage, few intra-granular bubbles are formed within
the grains. Gas atoms combined with the vacancies form these bubbles. Some these bubbles appear at
nano-scales which is significant lower than our simulation scales and hence, these bubbles are not tractable
in mesoscale simulations. Moreover, this causes significant numerical instabilities in the model. We have
mitigated this issue by choosing appropriate diffusion enhancement factors. It is observed that these small
bubbles are depleted over time, contributing to further growth of existing and newly formed intergranular
bubbles. The bubble reaches 130.3 nm radius at the end of the simulation. At 5.71×103 sec, the gas pressure
in the bubble reaches 175.36 MPa. However, as the bubble grows further, the bubble pressure is reduced and
at the final stage the bubble pressure is 152.08 MPa.

(a) (b)

Figure 5: Bubble evolution in HBS at time 5.71×103 sec (a) and 6.23×105 sec (b) for initial 100 nm bubble.

Figure 6 depicts the evolution of the 150 nm and 200 nm bubbles under the same conditions. The bubble
pressures reached in these cases are 225.07 MPa and 123.79 MPa, respectively.
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(a) (b)

Figure 6: Bubble evolution in HBS for initial 150 nm bubble at 6.58×104 sec (a) and initial 200 nm bubble
at 4.87×105 sec (b).

Figure 7 captures the porosity evolution over time for different initial bubble sizes. When the porosity
evolution is scaled with initial porosity (Figure 7b), the bubble growth rate decreases with increase in the
initial bubble sizes. In all the cases, porosity increases significantly at the initial stage and stabilizes over
time. At later stages, the bubbles coalesce and growth of existing bubbles occurs without altering the porosity.
Furthermore, gas atoms accumulate within the bubbles resulting in overpressurization.
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Figure 7: Porosity evolution over time for different initial bubble sizes (a) and porosity comparison scaled
with initial porosity (b).

Experimentally, the presence of an extremely high density of dislocations has been observed around the
large bubbles in the HBS. It is hypothesized that these dislocations are created when bubble pressure exceeds
the dislocation punching pressure for UO2 as the HBS forms. Hence, the bubble pressures are expected to be
at or above dislocation punching pressure [6]. The analytical pressure value determined by the dislocation
punching criterion is calculated as

P = Peq + Pext = Pℎ +
2st
r
+ Gb

r
, (35)

where Peq is the equilibrium pressure, and Pext is the external pressure, Pℎ is the hydrostatic pressure, st is
the surface tension, r is the bubble radius, G is the shear modulus, and b is the burger’s vector.
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Figure 8 compares the bubble pressure calculated from the simulations to the analytical values obtained
from Equation 35 assuming the hydrostatic pressure to be zero. The pressure values obtained from the
simulations are close to or above the analytical dislocation punching pressure. However, for the 150 nm
bubble, the simulation pressure value is significantly higher than what the analytical dislocation punching
criteria indicate. This indicates that dislocation punchingmay contribute significantly to HBS bubble growth,
which is not accounted for in the present model.
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Figure 8: Bubble pressure calculated from the simulations compared against the dislocation punching crite-
ria.

Figure 9 compares the growth of a 150 nm bubble at 1200 K and 1100 K. The bubble growth rate reduces
with decrease in temperature. Reduction in diffusivity with temperature hinders the bubble growth at lower
temperature. However, higher Xe concentration is achieved within the bubble at 1100 K temperature. The
bubble reaches a maximum pressure of 424.78 MPa in this case. Further verification and validation of the
pressure calculated from the model is necessary.
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Figure 9: Porosity evolution over time for 150 nm bubble at 1200 K and 1100 K temperature.

2.3 Conclusion
A grand-potential based phase field model has been developed to concurrently capture the bubble growth and
pressure increase in the HBS. The competition between vacancies and gas atoms drives the bubble growth
vs. pressure increase in the bubble. The pressure predicted by the model compares reasonably well with
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the dislocation punching criteria. Further verification and validation of the pressure values is required. The
pressure values calculated from these simulations can be used to inform the fragmentation criteria at the
engineering scale. Moreover, the structures generated from this model can be used for mesoscale fracture
simulation and also can provide crucial information pertaining to HBS structures to engineering scale models
for performance evaluation.

The model, at its present state, certainly has some limitations. The model currently only tracks vacan-
cies and gas atoms. Consideration of other defects such as interstitials is required to make the model more
predictive. Incorporation of the cluster-dynamics data needs to be done for better connectivity between cal-
culations at different scales. Moreover, 3D analysis could potentially provide more insight into the bubble
evolution and pressure. Finally, more quantitative verification and validation of the model needs to be done
to accurately inform the engineering scale performance models.
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3 PHASE-FIELD SIMULATIONS OF FISSION GAS BUBBLES IN
HIGH BURNUP UO2 DURING STEADY-STATE AND LOCA

TRANSIENT CONDITIONS

3.1 Introduction
To inform the development of a mechanistic criterion for pulverization, this section seeks to address two
primary questions using phase-field modeling. The first question is whether bubble sizes change during a
typical LOCA transient. Bubble sizes could be expected to change during a LOCA by the following mecha-
nism. Due to the rapid rise in temperature, the pressure of the gas contained within the bubble also increases
rapidly. This increase in gas pressure causes the bubble to become even more overpressurized relative to
equilibrium than at the start of the transient; thus, a greater compressive stress is experienced in the fuel
matrix surrounding the bubble. This compressive stress leads to a greater driving force for vacancy flux,
potentially leading to rapid growth of the bubble (if pulverization does not occur first). However, it is un-
known whether such growth will be significant during the short duration of a LOCA transient. The second
question we address is that of determining what pressure transients are experienced in the bubble in response
to a LOCA. In future work, these pressure transients can be used as input to a fracture model to determine
whether pulverization occurs for a given transient.

To address these questions, a new phase-field model is developed based on the Kim-Kim-Suzuki (KKS)
formulation [31]. Several phase-field models have been developed to simulate the fission gas bubble mi-
crostructure for UO2 fuel in the literature [32, 33, 34, 35, 36, 14, 37]. Given the expected overpressurization
of bubbles during a LOCA transient, the balance between gas pressure and the surface tension of the matrix-
bubble interface is an important physical effect that should be included in the model for the present study. To
our knowledge, Reference [37] is the only phase-field model thus far that includes the bubble-size-dependent
surface tension in the mechanical equilibrium condition and thus its effects on the stress state of the surround-
ing fuel. Here, we implement an alternative approach, based on Reference [38], that allows the curvature
of an arbitrarily-shaped interface to determine surface tension forces. The model is implemented in INL’s
Marmot application for phase-field simulation of nuclear materials.

The structure of this section is as follows. In Section 3.2, the formulation of the model is given, including
the surface tension effects and parameterization of the model for conditions typical of the region where the
HBS has formed. In Section 3.3, the implementation of the gas pressure and surface tension is verified
for equilibrium, underpressurized, and overpressurized bubbles. The model is applied to steady-state and
transient conditions in Section 3.4. The growth of single bubbles and the impingement of multiple bubbles
during steady-state growth are simulated in Sections 3.4.1 and 3.4.2, respectively. The response of bubbles
in the HBS region to transient conditions is considered in Section 3.4.3. The initial bubble pressure, size,
average porosity, and external restraint pressures are varied parametrically under typical LOCA conditions,
and the resulting pressure transients are calculated. Finally, in Section 3.5, conclusions are drawn, and an
outlook for future work is given.

3.2 Model Formulation
The model for UO2 gas bubble swelling is formulated following that proposed by Kim et al. [31], typically
referred to as the “KKS” formulation. The model is extended from that in Reference [31] to include two
tracked species: namely, the normalized concentration (site fraction) of uranium site vacancies, cv, and the
normalized concentration of gas atoms, cg (assumed to be represented by the properties of Xe atoms), which
sit on U site positions in the UO2 lattice. Because the concentration of U interstitials is significantly lower
than the vacancy concentration during steady-state reactor operation [39], interstitials are not considered
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here. In addition to the concentrations of vacancies and gas atoms, the model also indicates the difference
between matrix (solid) and bubble phases with a non-conserved order parameter, �, that varies continuously
from 0 in the matrix phase to 1 in the bubble phase. As in [14], the bubble phase is considered to be a mixture
of U-site vacancies and gas atoms such that cv + cg = 1.

The total free energy F of the system is given by

F = ∫V

[

fcℎem +W g(�) + �
2
|∇�|2 + fel

]

dV , (36)

where fcℎem is the chemical contribution to the free energy density, g(�) = �2(1 − �)2 is a double-well
potential,W is the height of the double well, � is the gradient energy coefficient, and fel is the elastic energy
density.

3.2.1 Chemical free energy density
The chemical free energy density is formulated in terms of the free energy densities of the possible phases
within the system:

fcℎem = [1 − ℎ(�)]fmcℎem(c
m
v , c

m
g ) + ℎ(�)f

b
cℎem(c

b
v, c

b
g) (37)

where f bcℎem is the chemical free energy density of the bubble phase; fmcℎem is the chemical free energy density
of the matrix phase; cbv and c

b
g are the concentrations of vacancies and gas, respectively, in the bubble phase;

and cmv and cmg are the concentrations of vacancies and gas, respectively, in the matrix phase. The function
ℎ(�) = �3(6�2 − 15� + 10) is an interpolation function that varies smoothly from ℎ(0) = 0 to ℎ(1) = 1.

Assuming that thematrix phase can be treated as an ideal solution, its free energy density can be expressed
as

fmideal =
kT
Va

[

cmv ln c
m
v + c

m
g ln c

m
g + (1 − c

m
g − c

m
v ) ln(1 − c

m
g − c

m
v )
]

+
cmv G

v
f

Va
+
cmg G

g
f

Va
(38)

where k is Boltzmann’s constant, T is the temperature in K, Va is the atomic volume occupied by a single
U atom, and Gjf is the Gibbs free energy of formation of defect species j. Gjf = H j

f − TS
j
f , where H

j
f

is the enthalpy of formation of defect j and Sjf is its entropy of formation. Numerical values for these and
other model parameters are given in Table 2. The values forHv

f and Svf were taken from the literature. The
value for Hg

f was calculated as the solution energy (sum of trap site formation energy and incorporation
energy [40]) for Xe in a bound uranium-oxygen vacancy cluster, which was found to be the most stable trap
site for Xe [20]. The value for Sgf was calculated in the same manner.

To improve the numerical performance of the model, a parabolic approximation to fmideal will be used:

fmideal ≈ f
m
cℎem =

kmv
2
(cmv − c

m,min
v )2 +

kmg
2
(cmg − c

m,min
g )2 (39)

The parabolic approximation for the vacancy contribution to fmcℎem is parameterized such that vacancies
will have the same chemical potential in the parabolic approximation as they do in the ideal solution model at
the steady-state defect concentration that exists during reactor operation, c0v . This is to ensure that the same
driving force for defect flux exists in the parabolic approximation as in the ideal solution model [35], since
defect fluxes are driven by gradients in chemical potential. For vacancies, this condition can be expressed as

�v =
)fmideal
)cmv

|

|

|

|c0v
=
)fmcℎem
)cmv

|

|

|

|c0v
(40)
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Theminimum in the parabola is set to the equilibrium concentration of vacancies in the absence of irradiation:
cm,minv = exp

(−Gvf
kT

)

. The parabola curvature is determined by substituting Equations (38) and (39) into
Equation (40) and re-arranging

kmv ≈
1

(

c0v − c
m,min
v

)

[

kT
Va

ln c0v +
Gfv
Va

]

(41)

(where the ln (1 − cmv − c
m
g ) term has been neglected since it is much smaller than ln c0v for dilute defect

species concentrations). For temperatures less than 1300 K, c0v ≈ 8 × 10
−3 [39]. Equation (41) was solved

for values in the range of 700 K ≤ T ≤ 1300 K, and the parabola curvature was fit to a linear function of T ,
resulting in kmv = 3.17 × 10

10 J/m3 + 1.79 × 108T J/m3/K. For gas atoms, the minimum in the parabola was

set to cm,ming = exp
(

−Ggf
kT

)

as for vacancies. Unlike vacancy concentration, the gas atom concentration is not

held at a local steady-state value by a recombination term. Therefore, for simplicity, kmg = k
m
v was chosen as

in Reference [14].
The bubble phase is considered to be a mixture of gas atoms and U-site vacancies. The chemical free

energy of the bubble phase is given by

f bcℎem = c
b
g
kT
Va

⎡

⎢

⎢

⎢

⎣

ln

⎛

⎜

⎜

⎜

⎝

1
nQ(

Va
cbg
− b)

⎞

⎟

⎟

⎟

⎠

− 1

⎤

⎥

⎥

⎥

⎦

+
kp
2
(1 − cbv − c

b
g)
2 + f0 (42)

The first term represents the free energy density of a van der Waals gas [17]. nQ =
(

mkT
2�ℏ

)3∕2
is the quantum

concentration, m is the mass of a Xe atom, and b = 0.085 nm3/atom is the hard-sphere exclusion volume
of Xe in the van der Waals equation of state [16]. The second term is a penalty term that prevents solid
U atoms from entering the gas phase by introducing a penalty for compositions where cbg + c

m
v = 1 does

not hold. Conceptually, it can be thought of as a constraint that maintains the gas phase composition along
the xenon-vacancy edge of the Gibbs triangle representing the system’s composition [14]. The value of the
prefactor kp = 6.4 × 1011 J/m3 was chosen to maintain cbg + c

m
v within 0.2% of 1.0. The third term controls

the offset between the gas phase and solid phase free energies, f0. This offset was used to set the minima
of the free energy densities of the matrix and bubble phases to have the same minimum value, as in [14]. A
temperature-dependent value of f0 was fit, resulting in f0 = 2.25 × 108 J/m3 - 2.04 × 106T J/m3/K.

3.2.2 Elastic energy density
The model uses the Voigt-Taylor scheme to interpolate the elastic energy densities, stresses, and strains
[41, 42] since it allows the gas bubble pressure to be incorporated in the mechanical equilibrium equation in
a straightforward manner. The elastic energy density fel is formulated as

fel = [1 − ℎ(�)]fmel + ℎ(�)f
b
el (43)

where fmel is the elastic energy density of the matrix phase, and f bel is the elastic energy density of the bubble
phase. (A small elastic energy density is defined in the bubble phase solely to prevent discontinuities in
the displacement field at the interfaces and is parameterized such that its contribution to microstructural
evolution is negligible, as discussed further in this section.) The elastic energy density in the matrix phase
is given by

fmel =
1
2
Cmijkl�

el,m
ij �el,mkl (44)
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and in the bubble phase, by
f bel =

1
2
Cbijkl�

el,b
ij �el,bkl (45)

The stress tensor is also interpolated using the order parameter. Using the Voigt-Taylor scheme, the
mechanical equilibrium equation has the form

∇ ⋅ �ij = ∇ ⋅
[

[1 − ℎ(�)]�mij + ℎ(�)�
b
ij + �

st
ij

]

= 0 (46)

where �mij is the stress tensor in the matrix phase, �bij is the stress tensor in the bubble phase, and �stij is the
surface tension of the matrix-bubble interface. The stress tensor in the matrix phase �mij is given by

�mij = C
m
ijkl�

el,m
kl (47)

where Cmijkl is the matrix phase stiffness tensor and �el,mij is the local elastic strain. The stiffness tensor
components Cmijkl are taken from Reference [27] and are listed in Table 2. The local elastic strain is given by

�el,mij = �ij − �∗ij = �ij − (c
m
v − c

0
v)�

0
v�ij (48)

where �ij is the total strain and �∗ij is the eigenstrain in the matrix due to defects. The concentration of gas
atoms during reactor operation is expected to be small (on the order of 10−7 [20]) compared to steady-state
vacancy concentration. Thus, the eigenstrain due to gas atoms is neglected, and only the eigenstrain due to
vacancies is considered. This results in �∗ij = (cmv − c

0
v)�

0
v�ij , where �

0
v is a constant factor that describes

the local contraction of the lattice due to the difference between the local vacancy concentration and the
steady-state vacancy concentration in the bulk far from bubbles, and �ij is the Dirac delta function. The
value of �0v was determined to be -0.269 from density functional theory calculations, assuming isotropic
contraction, following the methodology in Reference [43]. (For these calculations, vacancies are assumed to
be neutralized by the presence of U5+ ions, which best captures the physical state of the material [44, 45].)

The stress tensor in the bubble phase �bij is controlled by the density of gas in the bubble using the van
der Waals equation of state, with a small elastic contribution added to ensure that the displacement fields
remain continuous in the interfacial region. The resulting expression is

�bij = −

⎛

⎜

⎜

⎜

⎝

kT
Va
cbg
− b

⎞

⎟

⎟

⎟

⎠

I + Cbijkl�
el,b
kl (49)

where I is the second-order identity tensor, Cbijkl = 10
−3Cmijkl to ensure that the elastic energy contribution

from the bubble phase has a negligible contribution to the system’s evolution, and �el,bij = �ij . The negative
sign in the first term is to ensure that the gas exerts a compressive stress on the matrix at the bubble-matrix
interface.

The surface tension of the matrix-bubble interface is based on the approach developed in Reference [38]
and is given by

�stij =
[

W g(�) + �
2
|∇�|2

]

I − �∇� ⊗ ∇� (50)

where ⊗ denotes the dyadic product. This term is non-zero only in the interfacial region, and the surface
tension and interfacial energy are assumed to be the same in this approach, resulting in the use of the same
W and � as used in Equation (36). If future experimental or computational data reveal that surface tension
and interfacial energy differ significantly, different values ofW and � would be required in Equations (36)
and (50).
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3.2.3 KKS system constraints
The overall concentrations are defined in terms of the phase concentrations as [31]

cv = [1 − ℎ(�)]cmv + ℎ(�)c
b
v (51)

and
cg = [1 − ℎ(�)]cmg + ℎ(�)c

b
g (52)

In addition, the KKS model requires that the local chemical potentials of a component be equal to each other
in each phase [31]:

�g =
df bT
dcbg

=
dfmT
dcmg

(53)

and

�v =
df bT
dcbv

=
dfmT
dcmv

(54)

where fmT = f
m
cℎem + f

m
el and f

b
T = f

b
cℎem + f

b
el.

3.2.4 Interfacial energy parameterization
We estimate the interfacial energy  between the matrix and bubble as follows. In Reference [46], grain
boundary energies in UO2 were estimated to lie in a range centered at approximately 1.5 J/m2. Using a
representative grain boundary bubble semi-dihedral angle of 50◦,  can be estimated using Young’s equation
to be 1.17 J/m2.

In the KKS model, the interfacial energy and interface thickness 2� are related to the gradient energy
coefficient and double-well potential height via the following analytical expressions:

 =

√

�W

3
√

2
(55)

2� = 2.2
√

2
√

�
W

(56)

where the interface thickness 2� is defined as the distance between � = 0.1 and � = 0.9. For the majority of
the simulations, 2� was chosen to be 100 nm, such that it is an order of magnitude smaller than the bubble
sizes. With  and 2� specified, Equations (55) and (56) can be rearranged to determine the required values
of � andW to be � = 1.60 × 10−7 J/m andW = 1.54 × 108 J/m3.

3.2.5 Evolution equations
The order parameters evolve by the Allen-Cahn equation as

)�
)t
= −L

(

�F
��

)

(57)

where L is the order parameter mobility for �. Using Equations (27) and (28) of Reference [31], this can be
written as

)�
)t
= L

[

dℎ
d�

[

(fmT − f
b
T ) − �v(c

m
v − c

b
v) − �g(c

m
g − c

b
g)
]

−W
dg
d�

+ �∇2�
]

= L
[

dℎ
d�

[

(fmcℎem + f
m
el − f

b
cℎem − f

b
el) − �v(c

m
v − c

b
v) − �g(c

m
g − c

b
g)
]

−W
dg
d�

+ �∇2�
] (58)
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The concentration of each defect species evolves as

)cv
)t

= ∇ ⋅Mv∇�v + sv −Kvcmv (59)

)cg
)t

= ∇ ⋅Mg∇�g + sg (60)

where Mg and Mv are the mobilities of the defect species, sv and sg are source terms accounting for the
production of each defect, and Kv is an effective sink term for vacancies that accounts for the effects of
interstitial-vacancy recombination and vacancy absorption at sinks. The source terms are of the form sv =
s0v[1−ℎ(�)] and sg = s

0
g[1−ℎ(�)], where s

0
v and s

0
g are the constant values of defect production in the matrix

phase, and the function [1 − ℎ(�)] limits defect production to the matrix phase only. The Xe production
rate s0g = Ḟ YXeVa is determined from the fission rate density, Ḟ , and the fission yield of Xe, YXe. The
constant Va converts from number density to a normalized concentration. We have assumed F = 1.09×1013
fissions/cm3/s, based on typical values for LWR operation [16] and YXe = 0.2156 [47]. s0v is assumed to be
104Ḟ Va [39].

Since the phase-field model employed in this work does not track interstitials, the purpose of the effective
sink term −Kvcmv is to maintain the vacancy concentration in the matrix at steady-state conditions far from
any large HBS bubbles at c0v ≈ 8 × 10−3, as was determined from cluster dynamics simulations for the
temperatures of interest in this work [39]. At steady-state far from any large HBS bubbles or sinks, the
vacancy concentration is constant both time and position, so )cv

)t
= 0 and ∇�v = 0. Under these conditions,

from Equation (59),

Kv =
s0v
c0v
= 5.12 × 10−4 s−1 (61)

The defect mobilities were calculated from the diffusion coefficients and second derivatives of free en-
ergies for each phase as in Equation (18) of Reference [31]:

Mg =
Dg(�)
fcgcg

=
ℎDb

g + (1 − ℎ)D
m
g

fcgcg
(62)

where fcgcg is as defined in Equation (29) of Reference [31]:

fcgcg =

d2fmT
dc2g

d2f bT
dc2g

[1 − ℎ(�)]d
2f bT
dc2g

+ ℎ(�)d
2fmT
dc2g

(63)

Within the matrix phase, Equation (63) reduces to fcgcg =
d2fmT
dc2g

.
For the relatively low temperatures considered in the present simulations, the Xe diffusivity in the matrix

phase is given by the athermal diffusivityDm
g = D3 = 8.5×10

−40Ḟ = 9.3×10−3 nm2/s [20, 19]. Within the
matrix phase, d2f∕dc2g = k

m
v . Since the diffusivity of Xe in the bubble phase is expected to be significantly

higher than in thematrix, we setDb
g = 10

4Dm
g and assume fcgcg = d

2fmT ∕dc
2
g = k

m
g throughout the simulation

domain, which ensures that gas diffusivity and corresponding mobility is always significantly greater in the
bubble phase than in the matrix phase. Testing with higher diffusion coefficients in the bubble phase did not
cause any significant changes in the results.

Similarly, the vacancy mobility was calculated using

Mv =
ℎDb

v + (1 − ℎ)D
m
v

fcvcv
(64)
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Parameter Value Source
Va 0.04092 nm3 [26]
Hv
f 0.066 eV [39]

Svf −9.0k [39]
Hg
f 3.50 eV Section 3.2.1

Sgf −80.61k Section 3.2.1

cm,minv exp
(−Gvf

kT

)

Section 3.2.1
kmv 3.17 × 1010 J/m3 + 1.79 × 108T J/m3/K Section 3.2.1

cm,ming exp
(

−Ggf
kT

)

Section 3.2.1

kmg 3.17 × 1010 J/m3 + 1.79 × 108T J/m3/K Section 3.2.1
b 0.085 nm3/atom [16]
kp 6.4 × 1011 J/m3 Section 3.2.1
f0 2.25 × 108 J/m3 - 2.04 × 106T J/m3/K Section 3.2.1
Cm1111 395 GPa [27]
Cm1122 121 GPa [27]
Cm1212 64 GPa [27]
Cbijkl 10−3Cmijkl Section 3.2.2
�0v -0.269 Section 3.2.2
� 1.60 × 10−7 J/m Section 3.2.4
W 1.54 × 108 J/m3 Section 3.2.4
s0g 9.62 × 10−11 s−1 Section 3.2.5
s0g 4.09 × 10−6 s−1 Section 3.2.5
Kv 5.12 × 10−4 s−1 Section 3.2.5
Dm
g 9.3 × 10−3 nm2/s [19]

Dm
v 0.96 nm2/s Section 3.2.5

L 1.56 × 10−10 m3/J/s Section 3.2.5

Table 2: Parameters used for phase-field simulations of HBS bubble growth and pressure transients.

The vacancy diffusion coefficient in the matrix, Dm
v , is estimated from the experimentally measured self-

diffusion coefficient DU using Dm
v = DU∕(�V c0v) [39], where �V = 0.781 is the correlation factor for

vacancies [48]. For T < 1400 K under irradiation, uranium self-diffusion is in the athermal regime and
DU = 6.0 × 10−3 nm2/s [22], resulting in Dm

v = 0.96 nm
2/s. Db

v was set to 10
3Dm

v and fcvcv = d
2fmT ∕dc

2
v =

kmv +3(C
m
1111+C

m
1122)(�

0
v)
2 was used throughout the simulation domain to ensure vacancymobility was always

significantly greater in the bubble phase than in the matrix phase.
The Allen-Cahn mobility L was set sufficiently high that interface motion was controlled by diffusion of

defect species, resulting in L = 1.56 × 10−10 m3/J/s. It was verified that changes in L above this value did
not affect the bubble growth rate.

The evolution equations (58), (59), (60), (51),(52), (53),(54), and (46) were non-dimensionalized using
the characteristic energy scale E∗ = Cm1212 = 64 × 10

9 J/m3, length scale l∗ = 1 nm, and time scale �∗ = 1
s, and discretized using the finite element method as implemented in the MOOSE framework [49]. For
simulations with spherical symmetry, the problem is solved in spherical coordinates, with symmetry allowing
the problem to be solved in 1D as a function of the radial coordinate r only. In this case, 1D elements are
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used with linear Lagrange shape functions. Mesh size is discussed in Section 3.3. For 3D simulations, a
Cartesian coordinate system is used with 3D hexahedral mesh elements (with Δx = Δy = Δz) and linear
Lagrange shape functions.

Natural boundary conditions are used, resulting in no-flux boundary conditions for chemical species, a
zero-gradient condition for �, and traction-free boundary conditions for the mechanical equilibrium equation.
Time integration uses the second-order backward differentiation formula. The evolution equations are solved
at each time step using the preconditioned Jacobian-Free Newton-Krylov method. Adaptive time stepping is
used using the IterationAdaptiveDT algorithm as implemented in the MOOSE framework [50].

3.3 Model Verification

3.3.1 Equilibrium bubbles
Prior to investigating LOCA transients, the behavior of the model described in Section 3.2 is verified to
ensure that it correctly captures the balance between gas pressure and surface tension. A bubble with the
equilibrium pressure P = 2st∕R, where st is the surface tension and R is the radius of the bubble [16],
is first considered. An analytical solution exists for the stress state of a solid surrounding a pressurized gas
bubble in the sharp interface limit [51]. When the radius of the surrounding solid is much larger than the
radius of the bubble and there is no external pressure on the external surface of the solid, the stress tensor
component �rr in spherical coordinates is given by

�rr = −
R3

r3

(

P −
2st
R

)

(65)

for r > R. In this work, we assume that the surface tension is equal to the interfacial energy, st =  . As can
be seen from Equation 65, for an equilibrium bubble with P = 2st∕R, �rr = 0 in the surrounding solid.

To verify that the model correctly captures this behavior, a bubble with R = 250 nm was simulated.
The equilibrium pressure for a bubble with this radius is 9.36 MPa, and the corresponding cg = 0.03662
and cv = 1 − cg = 0.96338. The simulation domain used spherical coordinates with spherical symmetry
assumed, and had a radius of 550 nm so that the gas phase porosity was 10%. The initial condition for the
order parameter was

� = 1
2

⎡

⎢

⎢

⎣

1 + tanh
⎛

⎜

⎜

⎝

r − R
√

2��

⎞

⎟

⎟

⎠

⎤

⎥

⎥

⎦

(66)

where R = 250 nm and �� is the equilibrium thickness of the interfacial profile [31]. The initial conditions
for the gas and vacancy concentrations were

cg = cb,ig ℎ(�) + c
m,i
g (1 − ℎ(�)) (67)

cv = cb,iv ℎ(�) + c
m,i
v (1 − ℎ(�)) (68)

where cb,ig = 0.03662, cb,iv = 0.96338, cm,ig = 10−7, and cm,iv = 0.008, and � is given by Equation 66. For the
purposes of verification of the balance between surface tension and gas pressure, the eigenstrain prefactor
�0v was set to 0 to prevent non-equilibrium vacancy concentrations in the interface from affecting the stress
calculation. All other simulation parameters were as shown in Table 2, with the exception that � andW were
changed to vary the interface width 2� from 16.67 to 100 nm in order to investigate the effect of interface
width on the stress state. The grid spacing Δx = 2�∕10. The simulation was allowed to run for a single time
step of 0.5 s.

The �rr component of the stress tensor is shown in Figure 10a for varying 2�, along with the analytical
solution from Equation (65). The gas pressure inside the bubble results in �rr = −P = −9.36MPa inside the

24



0 200 400 600
-10

-8

-6

-4

-2

0

2
10

6

(a)

0 200 400 600
-10

-8

-6

-4

-2

0

2
10

6

(b)

Figure 10: (a) �rr as a function of radius for a gas bubble with R = 250 nm and the expected equilibrium
pressure of P = 9.36MPa for varying interface width 2�, together with the analytical solution. Because the
surface tension of the bubble-matrix interface exactly balances the gas bubble pressure, �rr = 0 outside the
bubble. (b) Effect of grid spacing Δx on stress state outside the bubble for 2� = 100 nm.

bubble (r < R − �). In each case, �rr = 0 outside the bubble (r > R + �). This demonstrates that the model
correctly reproduces the expected behavior: because the surface tension exactly balances the gas pressure,
no compressive or tensile stress in the radial direction is present in the fuel matrix surrounding the bubble.
Even for 2� = 100 nm, the stress state outside the bubble is correctly captured.

The effect of grid spacing Δx was also considered, as shown in Figure 10b for 2� = 100 nm. Slight
deviations in the stress profile were observed as Δx was increased from 10 to 50 nm. Based on the relatively
close agreement in the stress profiles between Δx = 10 and 25 nm, Δx = 2�∕4 was used at the finest level
of mesh refinement for the simulations of Section 3.4 in order to improve computational efficiency. In all
cases, �rr = 0 was obtained sufficiently far from the interface, as expected.

3.3.2 Non-equilibrium bubbles
The behavior of the model for bubbles with gas pressures different from equilibrium is considered in this
section. As can be seen from the analytical solution of Equation (65), for an overpressurized bubble, or a
bubble with gas pressure higher than the equilibrium pressure for its radius, a compressive stress will be
exerted on the surrounding fuel matrix in the radial direction (�rr < 0). Conversely, for an underpressurized
bubble, a tensile stress will be felt in the surrounding fuel matrix in the radial direction (�rr > 0). The
analytical solution of Equation 65 gives �rr as a function of radius.

To test whether the model can correctly reflect this behavior, a bubble with R = 250 nm is again con-
sidered, with an expected equilibrium pressure of 9.36 MPa. To test the behavior for an overpressurized
condition, a bubble with P = 15 MPa is considered. Simulation parameters and initial conditions were as
described in Section 3.3.1, except that cb,ig = 0.05611 and cb,iv = 0.94389, and the simulation domain had a
radius of 1000 nm so that the analytical solution better matched the zero-traction boundary condition em-
ployed in the simulation. The �rr component of the stress tensor at the end of the simulation is shown in
Figure 11a as a function of the interface width 2�. Outside the bubble, �rr < 0, indicating that a compressive
stress is exerted on the matrix in the radial direction, as expected for an overpressurized bubble. As the in-
terface width was decreased, the simulation results converged to the analytical solution, as expected. For all
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Figure 11: (a) Stress tensor component �rr for an overpressurized bubble for varying interface width 2�
and comparison to analytical solution. In the fuel matrix outside the bubble, �rr < 0, corresponding to a
compressive stress in the radial direction. (b) Stress tensor component �rr for an underpressurized bubble.
In the fuel matrix outside the bubble, �rr > 0, corresponding to a tensile stress in the radial direction. (c)
Order parameter profile � for an overpressurized bubble with P = 15 MPa at t = 106 s and comparison to
analytical solution for 2� = 50 nm. The elastic energy in the interface does not cause significant deviation of
� from the analytical solution. (d) Surface tension tensor component �st�� for overpressurized and equilibrium
bubbles. �st�� is unaffected by the gas bubble pressure.

interface widths, outside the interfacial region, the simulation results matched the analytical solution well.
To test the model’s behavior for an underpressurized condition, a 250 nm bubble with P = 6 MPa

is considered. The same parameters and initial conditions were used as described for the overpressurized
bubble, except that cb,ig = 0.02413 and cb,iv = 0.97587 to produce 6 MPa gas pressure. The stress tensor
component �rr is shown in Figure 11b. In this case, �rr > 0 outside the bubble, corresponding to a tensile
stress in the radial direction in the fuel matrix surrounding the bubble, as expected for an underpressurized
bubble. Again, the simulation results converge to the analytical solution as the interface width is decreased,
and the simulation results matched the analytical solution well outside the interfacial region.
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The presence of elastic energy in the interfacial region has been shown to affect the equilibrium order
parameter profile for some elastic energy interpolation schemes in phase-field models, including the Voigt-
Taylor scheme used here [42]. Because the surface tension is a function of the order parameter by Equa-
tion (50), changes in the order parameter would affect the surface tension; thus, it is important to quantify
any changes in the order parameter profile caused by under- or overpressurized bubbles. To evaluate this
effect, we evolved an overpressurized bubble with P = 15 MPa and 2� = 50 nm to t = 106 s to ensure
the interfacial profile had reached the equilibrium shape, with vacancy and gas atom source and sink terms
set to zero so interfacial position would remain constant. The resulting interfacial profile is shown in Figure
11c, along with comparison to the analytical solution from Equation (66), which is derived in the absence
of elastic energy in the interface [31]. As can be seen, the order parameter profile for the overpressurized
bubble is in good agreement with the analytical solution. This is in contrast to the results observed in Refer-
ence [42], which considered the effect of a misfitting solid precipitate in a matrix; in that case the interface
width was decreased compared with the analytical solution. Here, the significantly lower stresses induced
by the overpressurized fission gas bubbles compared with the misfitting precipitates, combined with the low
stiffness assumed in the bubble phase, result is significantly lower elastic energy in the interfacial region;
therefore, the order parameter profile is not significantly affected here. Since the surface tension is a func-
tion of the order parameter, the surface tension is also unaffected by the bubble pressure, as demonstrated
by Figure 11d, which shows the surface tension tensor component �st�� for an overpressurized bubble and
an equilibrium bubble (again evolved to t = 106 s with source and sink terms set to zero). The profiles
do not differ significantly from each other. The same results were obtained for the other tangential compo-
nent of surface tension �st��. (It should be noted that prior to HBS formation, intragranular bubbles in UO2
are much smaller and have much higher gas pressures; therefore, elastic energy in the interfacial region of
non-equilibrium intragranular bubbles may have a greater effect on the order parameter profile and surface
tension; future work applying the present model to such bubbles should consider this effect.)

3.4 Model Application to Steady-state and Transient Conditions

3.4.1 Bubble growth during steady-state reactor operating
conditions

In this section, the growth of a bubble in the HBS region during typical steady-state reactor operating con-
ditions is simulated. An initial bubble radius of R = 500 nm is considered, with an initial pressure of 100
MPa based on observed dislocation punching [6]. The simulation parameters and initial conditions were as
described in Section 3.3.1, with 2� = 50 nm and cb,ig = 0.2253 and cb,iv = 0.7747. The simulation domain
size is 1075 nm, corresponding to an initial porosity of 10%. The simulation temperature was 700 K.

The bubble radius and pressure during growth are shown in Figure 12. The rate of growth in the radius
slows as the bubble’s size increases, as expected due to the constant gas source term in the surrounding fuel
matrix. Due to the current burnup limit of 62 GWd/MTU for the peak power rod in commercial LWRs, the
rod containing such a bubble would likely be removed from operation before the final simulation time of 107
s is reached. Bubble pressure as a function of time is shown in Figure 12b. In this figure, the equilibrium
pressure for a bubble with the radius taken from Figure 12a is also plotted. The bubble pressure decreases
as growth occurs due to the overpressure-driven influx of vacancies, and comes closer to the equilibrium
pressure for the given radius. However, the actual bubble pressure remains above equilibrium throughout the
simulation time. Therefore, bubbles in the HBS region that are initially overpressurized are likely to remain
significantly above equilibrium pressure for the remainder of their time in the reactor. This increases the risk
of rapid pressure increases experienced during a LOCA transient.

27



0 2 4 6 8 10

10
6

500

550

600

650

700

(a)

0 2 4 6 8 10

10
6

0

2

4

6

8

10

12
10

7

(b)

Figure 12: Growth of a bubble in the HBS region during steady-state reactor operating conditions. (a) Radius
as a function of time; (b) simulated bubble pressure, and equilibrium pressure for a bubble with radius from
(a), as a function of time.

3.4.2 3D simulations of impingement of growing bubbles in the
HBS region

To demonstrate the model’s capability to capture complex morphological evolution, the growth and im-
pingement of two adjacent bubbles in the HBS region are simulated in 3D. The initial conditions were two
bubbles with initial radii of 300 nm and initial pressure of 100 MPa, placed with the bubble centers 800 nm
apart. Simulation parameters and initial conditions for the order parameter and composition fields were as
described in Section 3.3.1, with cb,ig = 0.2253 and cb,iv = 0.7747, 2� = 100 nm, and simulation temperature
of 700 K. The simulation domain was 3600 nm × 2400 nm × 2400 nm in the x, y, and z directions. Mesh
adaptivity was used, with the finest resolution Δx = 2�∕4 = 25 nm used at the interface between the bub-
ble and matrix phase, increasing to Δx = 50 and 100 nm progressively farther from the interface. Natural
boundary conditions were used for all simulation variables. The simulations were run on two nodes of the
Falcon cluster at INL with 36 cores/node and required approximately 90 hours to reach a simulation time of
2 ×107 s, demonstrating that, in spite of the complexity of the model, its computational requirements are not
excessive.

The results of the simulations are shown in Figure 13. The morphology of the bubbles (as defined by the
isosurface of � = 0.5) is shown as the bubbles grow and coalesce in (a), (c), (e), and (g). The hydrostatic
stress state in the matrix surrounding the bubbles is shown on the plane defined by z = 1200 nm (which
is at the center of the domain in the z-direction) in (b), (d), (f), and (h). The plane is colored by the local
hydrostatic stress at each position, and the bubble morphology in grey remains in the images.

The initial bubble morphology and stress state is shown in Figures 13a and 13b (these are shown at
t = 10.4 s rather than t = 0, since a short amount of time is required for interfacial profiles to locally equi-
librate). At the beginning of the simulation, the bubbles are significantly overpressurized as set in the initial
conditions. This results in a compressive (negative) hydrostatic stress in the matrix immediately outside the
bubbles, which decreases to a value near zero within approximately 100 nm of the interface. Just after the
bubbles coalesce, a region of enhanced compressive hydrostatic stress appears (see Figure 13d) surrounding
the neck region where the bubbles have coalesced. This acts as an additional driving force for vacancy flux
due to the vacancy eigenstrain. As bubble growth proceeds, the neck region grows outwards along with the
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Figure 13: Growth and impingement of two bubbles in the HBS region during steady-state reactor operating
conditions. (a), (c), (e), and (g) show the bubble morphology as defined by the isosurface of � = 0.5. (b),
(d), (f), and (h) show the hydrostatic stress at the center of the simulation domain, visualized as mapped on
the plane z = 1200 nm, with the grey isosurfaces of the bubble morphology remaining. Simulation times:
(a), (b): t = 10.4 s; (c), (d): t = 1.6 × 106 s; (e), (f): t = 4.2 × 106 s; (g), (h): t = 2.2 × 107 s. (Note that the
minimum of the color bar in each subfigure has been adjusted to allow resolution of finer details in the the
stress distribution.)
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bubble edges, resulting in a pill-shaped morphology, as shown in Figures 13e and 13f, at t = 4.2 × 106 s.
Finally, at a much later simulation time of t = 2.2 × 107 s, the bubble morphology approaches the expected
spherical shape, as shown in Figure 13g. At this time, the magnitude of the hydrostatic stress surrounding
the bubble is much lower, as the gas pressure within the bubble has been reduced but has not yet reached
the equilibrium pressure, as was observed in Figure 12b. (There is also a region of slight enhancement of
the hydrostatic stress near the top and bottom of the center of the simulation domain, which is a result of
the decaying stress field interacting with the simulation domain boundaries in the traction-free boundary
condition.)

3.4.3 LOCA pressure transients
During a LOCA, temperature increases rapidly in the fuel, at a rate on the order of 5 K/s [2]. Temperatures
may reach as high as 1400 K before a quench can be initiated. In this section, we investigate how the sudden
temperature increase of a typical LOCA transient affects the overpressurized bubbles found in the HBS
region in order to determine whether there is any significant change in bubble size, and to determine the
bubble pressure in response to the transient for various bubble parameters.

A series of simulations was performed at an initial bubble temperature of 700K. Temperature was ramped
at 5 K/s for a total of 140 s, resulting in a final temperature of 1400 K. Simulations with varying bubble radius,
initial pressure (at fixed bubble radius), and external pressure boundary condition (at fixed bubble radius)
were performed, with 2� = 50 nm. Prior to the beginning of the transient, the bubble evolution model
described in Section 3.4.1 was run, starting from a radius slightly below the nominal radius given for each
simulation, to allow order parameter and concentration fields to fully equilibrate prior to the LOCA transient.
The transient was initiated when the radius (as determined by the position where � = 0.5) exactly matched
the nominal radius.

Simulations with varying initial gas pressure were conducted for a bubble with a constant radius of
R = 250 nm. A gas pressure of 200 MPa is estimated to be an upper bound for the pressure of a bubble
of this size, based on the dislocation punching pressure for a bubble of this size [6]. If the bubble pressure
was above this value, dislocations would be punched out in the surrounding fuel matrix, causing the bubble
to grow. However, pressures could be lower than this upper bound estimate. To investigate the effect of
varying the initial pressure P0, simulations with initial bubble pressures of 50, 100, and 200 MPa were
conducted. In each case, the radius of the bubble did not change significantly during the LOCA transient.
The resulting pressures are shown in Figure 14a. Because the radius of the bubble remains constant during
the transient, pressure increases linearly as a function of time with temperature, as expected from the van der
Waals equation of state with constant density.

Although the bubble size in these simulations did not change during LOCA transients, one potential factor
that could affect this conclusion is the enhanced diffusivity of defects along grain boundaries, which could be
as much as 106 times greater than bulk diffusivities for normal thermally activated diffusion [52]. Although
the diffusivities of vacancies and Xe atoms along UO2 grain boundaries in radiation-enhanced conditions
have not been determined to our knowledge, and the present model does not include grain boundaries explic-
itly, we have assessed the potential impact of enhanced diffusivities along grain boundaries on bubble growth
during transients using the following methodology. The diffusivity along grain boundaries is expected to be
much higher than in the bulk; however, the volume of the grain boundary regions is significantly smaller
than the bulk of the grains. To represent in an averaged way the potentially increased diffusivities along
the grain boundaries in our 1D simulation domain, we assume the grain boundary region is no more than
1% of the total volume of the fuel matrix region, and set the diffusivities of the vacancies and gas atoms
in the fuel matrix to 104 of their original bulk values, based on 1% of an increase of 106. The diffusivities
of the defects in the gas bubble were increased by the same factor to ensure that they remain significantly
greater than the diffusivities in the solid, as is expected physically. The LOCA transient simulation of a 250
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Figure 14: (a) Pressure as a function of time for a bubble with R = 250 nm and varying initial bubble
pressure. The upper bound estimate for initial bubble pressure is 200 MPa. (b) Bubble pressure as a function
of time for varying bubble radius, with pressures determined by a lower bound estimate. (c) Bubble pressure
as a function of time for varying Pext.
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nm radius bubble with an initial pressure of 200 MPa was repeated with the increased diffusivities. Even
with the increased diffusivities, there was no significant change in bubble size during the transient. Based
on these results, we conclude that, even if the defect diffusivities along grain boundaries are significantly
higher than the radiation-enhanced bulk values, bubble size should not change significantly during a typical
LOCA transient. If accurate values for defect diffusivities along grain boundaries become available in the
future, their impact may be reassessed using a realistic representation of the grain boundary structure with
3D simulations.

Simulations of bubbles with varying radii were also conducted. R = 250, 500, and 1000 nm were
considered. The pressures for these bubbles were set at 200, 100, and 50 MPa, respectively, based on upper
bound estimates from dislocation punching [6]. The pressures for these bubbles are shown in Figure 14b. As
expected based on the previous results, the bubble radius did not change significantly during the transient,
and the bubble pressure therefore increased linearly with temperature.

Finally, the pressure at the external boundary at the edge of the domain, Pext, was varied for a bubble
with a radius of R = 500 nm. In addition to the previously simulated Pext = 0, Pext = 30, and 60 MPa were
considered. The bubble radii again did not change significantly, and the external restraint pressure did not
significantly affect the pressure transient. The external pressure may have a more significant effect on the
fracture behavior in the surrounding matrix, which will be considered further in Section 4.

3.5 Conclusions
In this work, a new phase-field model of fission gas bubble evolution in nuclear fuel has been developed and
parameterized for UO2. The model includes the effects of the gas pressure inside the bubble and the surface
tension of the bubble-matrix interface, accounting for the opposing effects of these factors on the stress state
of the fuel and resulting microstructural evolution. The model was shown to give the expected stress state in
the fuel matrix surrounding a bubble for equilibrium, overpressurized, and underpressurized bubbles.

The model was applied to simulate growth of initially overpressurized bubbles in the HBS region during
steady-state growth conditions. During growth of a single isolated bubble, the pressure decreases as growth
proceeds, but remains overpressurized during the remainder of the the fuel lifetime in the reactor. During
growth and impingement of two nearby bubbles, the model captured the complex morphological evolution
and the effect of the stress state on growth. Following impingement of the two bubbles, the combined bubble
remained overpressurized.

To improve understanding of the response of fuel in the HBS region to LOCA conditions, the response
of a single bubble in the HBS region to a temperature transient typical of LOCA conditions was simulated.
The size of the bubble did not change significantly during the transient for a variety of initial conditions, in-
cluding varying bubble size, initial pressure, and external restraint pressure. It was also shown that enhanced
defect diffusivities along grain boundaries is not likely to result in bubble size change during transients. This
demonstrates that future work using a phase-field fracture model to investigate fracture in response to LOCA
transients does not need to account for a change in bubble size, thus simplifying the model required for that
work. The calculated pressure transients from Section 3.4.3 will also be used as input to the phase-field
fracture model. It is expected that the insights gained from this work will contribute to an improved un-
derstanding of the mechanism of fuel pulverization, an improved capability to predict its occurrence, and
the development of strategies to mitigate its impact, potentially leading to increases in burnup limits and
improved economics for commercial LWRs.
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4 PHASE FIELD MODELING OF UO2 HBS FRAGMENTATION

4.1 Phase Field Fracture Model
The mechanics minimization problem is regularized and approximated using the phase-field c as per:

{u, c} = argmin
u,c

Ψ(u,(u, c,(c), (69a)

subject to u = g, ∀x ∈ )ΩD, (69b)
ċ ⩾ 0, ∀x ∈ Ω (69c)

where (69c) is the irreversibility condition equivalent to the “no healing” condition on the permanent crack
set and:

Ψ(u,(u, c,(c) =Ψelastic((u, g(c)) + Ψlfracture(c,(c) − Ψdissipation(c)

− Ψtraction
external(u) − Ψ̃

pressure
external (u, c,(c),

(70a)

Ψelastic((u, g(c)) = ∫
Ω

g(c) ⟨A⟩
elastic((u) dV + ∫

Ω

 ⟨I⟩
elastic((u) dV , (70b)

Ψlfracture(c,(c) = ∫
Ω

cl(c,(c) dV , (70c)

Ψ̇dissipation(ċ) = ∫
Ω

1
2
�ċ2 dV , (70d)

Ψtraction
external(u) = ∫

)ΩN

� ⋅ u dA, (70e)

Ψ̃pressure
external (u, c,(c) = −∫

Ω

p(c ⋅ uI ′(c) dV (70f)

Let us define trial spaces:

 =
{

u|u ∈ 1(Ω)d , u = g,∀x ∈ )Ω
}

,  =
{

c|c ∈ 1(Ω), ċ ⩾ 0,∀x ∈ Ω
}

(71)

along with their corresponding weighting spaces:

 =
{

�u|�u ∈ 1(Ω)d , u = 0,∀x ∈ )Ω
}

,  =
{

�c|�c ∈ 1(Ω), �c ⩾ 0,∀x ∈ Ω
}

(72)

The optimality conditions for u follow from the functional derivative of the objective function Ψ as per:

∫
Ω

( ⋅
) elastic((u, g(c))

)(u
dV − ∫

)ΩN

) elastic((u, g(c))
)(u

n dA

+ ∫
)ΩN

) traction
external(u)
)u

dA + ∫
Ω

) ̃pressure
external (u, c,(c)

)u
dV = 0, ∀Ω′ ⊆ Ω,∀)Ω′N ⊆ )ΩN

(73)

Substituting (70) yields:

( ⋅ � − pI ′(c)(c = 0, ∀x ∈ Ω, (74a)
�n = � , ∀x ∈ ΩN (74b)
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where � =
) elastic
)(u

is the stress-strain constitutive relation. The optimality conditions for c that are subject
to the irreversibility constraint (69c) also follow from the functional derivative (with respect to the rate of
the objective function) and recover the Karush–Kuhn–Tucker (KKT) conditions:

∫
Ω

) elastic((u, g(c))
)c

ċ dV − ∫
Ω

( ⋅
) lfracture(c,(c)

)(c
ċ dV + ∫

)Ω

) lfracture(c,(c)
)(c

⋅ nċ dA

+ ∫
Ω

) lfracture(c,(c)
)c

ċ dV + ∫
Ω

( ⋅
) ̃pressure

external (c,(c)
)(c

ċ dV − ∫
)Ω

) ̃pressure
external (c,(c)
)(c

⋅ nċ dA

+ ∫
Ω

) ̃pressure
external (c,(c)

)c
ċ dV + ∫

Ω

) ̇dissipation(ċ)
)ċ

ċ dV = 0, ∀Ω′ ⊆ Ω,∀)Ω′N ⊆ )ΩN

(75)

Again, substituting (70) yields:

�f ⩾ 0, ċ ⩾ 0, �f ċ = 0,

with �f =
⎧

⎪

⎨

⎪

⎩

�ċ − ( ⋅ � +
c
c0l
�′(c) − Y , ∀x ∈ Ω,

� ⋅ n + pI ′(c)u ⋅ n, ∀x ∈ )Ω

(76)

where � =
) lfracture
)(c

=
2cl
c0

(c is the thermodynamic conjugate to (c, and Y is the generalized fracture

driving force consisting of contributions from the active elastic energy density as well as work done by
pressure:

Y = −g′(c) ⟨A⟩
elastic + pI

′(c)( ⋅ u (77)

With a view towards the solution strategy, using a variational inequality solver (e.g., a primal-dual active
set algorithm) to enforce the irreversibility constraint requires discretization of the fracture envelope �f only
on the inactive set ċ > 0 and �f = 0. Hence, only the weak form in the case of �f = 0 is outlined below:

Given g, � , and c0, find u ∈  and c ∈ , such that ∀�u ∈  and ∀�c ∈ :

∫
Ω

� ∶ (�u dV + ∫
Ω

pI ′(c)(c ⋅ �u dV − ∫
)ΩN

� ⋅ �u dA = 0, (78a)

∫
Ω

�ċ�c dV + ∫
Ω

� ⋅ (�c dV + ∫
Ω

c
c0l
�′(c)�c dV − ∫

Ω

Y �c dV + ∫
)Ω

pI ′(c)u ⋅ n�c dA = 0 (78b)

4.2 Verification

4.2.1 Pressurized crack propagation
We considered a pressurized crack propagation problem conducted by [53]. This problem serves to verify
whether cracks should begin to grow once a critical pressure loading is applied. In Figure 15d, an initial
crack is prescribed in the center with a length of 2a. As seen in Figure 15a, the phase-field variable c is
initialized to be 1.0 only for those nodes on the bottom boundary belonging to the crack. After the first time
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step, the phase-field variable c will be regularized to a correct profile, as shown in Fig 15b. This differs from
the others’ approach [53, 54], which involved imposing initial values for a set of elements. Due to symmetry,
only half the domain with a size of L×L∕2 is used as shown in Figure 15c. The ratio L∕a is taken to be 20.
The displacements on all outer boundaries are set to zero. A uniform pressure is increased until the crack
begins to propagate. The propagation of the crack at fixed pressure conditions is unstable. According to the
linear elastic fracture mechanics (LEFM), the normalized critical pressure is given as:

pc
�0
=
√

l
�a

(79)

where �0 =
√

E∕(1 − �2)effc ∕l. The 
eff
c is the effective fracture toughness in the phase-field fracture model

and is given as [55, 54]:

effc = c
(

ℎ
4c0l

+ 1
)

(80)

The LEFM solution is based on a brittle fracture model in which critical fracture stress approaches an
infinite value. A comparison between the numerical results and the LEFM solution for the critical pressure
values is shown in Figure 16. The phase-field solution converges as �c increases and shows good agreement
with the LEFM solution.

(a) (b)

(c) (d)

Figure 15: Pressurized crack propagation problem: (a) Initial values are imposed on crack surface nodes
(zoomed view). (b) Regularized phase-field variable after one time step (zoomed view). (c) Mesh with five
levels of local refinement. (d) Preexisting crack. The red and blue color correspond to value of 1.0 and 0,
respectively.
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Figure 16: Comparison between the numerical results and the LEFM solution for the critical pressure values.

4.3 Application: High-burnup Fragmentation
We further simulated fission-gas-induced inter-granular fracture of UO2 HBS. The material properties and
model parameters are summarized in Table 3. The fracture stress of UO2 was taken to be 130 MPa [56]. Due
to a lack of experimental data, the energy release rate GBc was assumed to be 0.0012 Pa⋅m and the Griffith’s
characteristic length lcℎ = Ec∕�2c ≈ 22.78 nm.

To facilitate inter-granular crack propagation, the energy release rate of grain interiors must satisfy the
following:

INTc ≫ GBc (81)

so that crack propagation is predominately driven by inter-granular elastic energy. In this work, the poly-
crystalline microstructure is described by a set of non-conserved field variables obtained from a phase-field
grain growth model [24]. The initial grain centroids are generated from a random close-packing Voronoi
structure[57] that provides equiaxed grains with average radius of 85 nm. The field variable �i equals 1
within the ith grain and 0 elsewhere. Regions where �i varies between 0 and 1 correspond to grain bound-
aries. The grain boundaries are computed as bnd =

∑

�2i . If bnd is less than the cut-off value, c is given
by GBc . Otherwise, c is given by INTc . For simulations considered in this work, a cut-off value of 0.75 was
observed to be appropriate.

In this work, the elastic properties of the grain interiors are assumed to be isotropic and therefore do not
depend on crystal orientations. Similarly, a field variable is used to represent bubbles in a diffusivemanner. A
Young’s modulus of E = 385 GPa and a Poisson’s ratio of � = 0.23—typical for UO2 [58]—were assigned
to the bulk, while a very small Young’s modulus of Eb = 10−9E was assigned to the bubbles to remove
zero-energy modes. Hydrostatic pressure was applied to the bubble phase. When cracks occurred, the same
pressure was applied on the crack surfaces. Symmetry boundary conditions were applied to the bottom and
left boundaries.
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Table 3: Parameters used to perform the UO2 simulation.

Property Symbol Value Unit Reference

Young’s modulus E 385 GPa [58]
Fracture stress �c 130 MPa [56]

Energy release rate of the grain boundary GBc 0.0012 Pa⋅m Lack of experiment data
Energy release rate of the grain INTc 0.012 Pa⋅m Equation 81

Length scale l 0.01 �m Equation 55
Viscosity � 1×10−3 s⋅mm−1 [59, 60]

4.3.1 LOCA pressure transients
We started to investigate gas-pressure-induced fracture behavior during LOCA-driven temperature transients.
During a LOCA transient, temperatures in the fuel rod increase rapidly, leading to increased pressure in the
gas contained within the bubbles. The temperature as a function of time at the edge of a representative pellet
for each rod was obtained by using the engineering-scale fuel performance code BISON [61] simulation of
the Studsvik Rod 196 experiment [62]. The temperature was used as an input to the KKS phase-field model
[9] to determine the pressure as a function of time. In the KKS phase-field model, the gas pressure is assumed
to be 100 MPa during steady-state reactor operation at 700 K. The Studsvik experiment was begun with a
fixed temperature hold at 572.6 K at the outer surface prior to the transient, resulting in the initial pressure
at the start of the transient decreasing from 100 MPa to below 80 MPa. The pressure was passed to our
phase-field fracture model to simulate fracture in the regions surrounding individual bubbles.

Two radii (0.25 �m and 0.5 �m) were considered. No external loading was applied in these two cases.
As shown in Figures 17 and 18, the fracture patterns are different between these two cases. For the case with
a smaller bubble, two major cracks formed, both propagating to outer surfaces. For the case with a larger
bubble, only one major crack was able to propagate to a free surface, and the propagation of other cracks was
suppressed by this major crack. Cracks initiate when tensile stress caused by the pressurized bubble reaches
critical fracture strength. The critical pressures are 120.17 and 89.69 MPa for the small and large bubbles,
respectively. The critical pressure is lower for the larger bubble because larger bubbles cause higher stress
concentrations at the bubble/matrix interface, with the same pressure applied inside a bubble. This indicates
bubble size affects the fracture behavior of HBS.
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Figure 17: Radius = 0.25 �m; external pressure = 0 MPa: (a) Pressure history. (b) Cracks propagation. (c)
Maximum principal stress.
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Figure 18: Radius = 0.5 �m; external pressure = 0 MPa: (a) Pressure history. (b) Crack propagation. (c)
Maximum principal stress.

To study the effect of external pressure, different external pressures were then applied on the top and
right boundaries. In a fuel pellet, such external pressures can be caused by the fuel-cladding mechanical
interaction. The results from using three different external pressures—0, 30, and 60 MPa—are shown in
Figures 18, 19, and 20, respectively. The external pressure can alter the critical pressure, as it plays a role
in compressing the bubble. The critical pressure becomes significantly higher for larger external pressure
values, though the crack pattern does not significantly change.
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Figure 19: Radius = 0.5 �m; external pressure = 30 MPa: (a) Pressure history. (b) Crack propagation. (c)
Maximum principal stress.

4.3.2 Multi-bubble interaction
We next considered two cases: one with two bubbles and one with three. The bubble radius was 0.25 �m.
The centers of the bubbles in the two-bubble case were at (0.4 �m, 1.4 �m) and (1.4 �m, 0.4 �m), whereas
the centers of the bubbles in the three-bubble case were at (0.5 �m, 1.6 �m), (1.6 �m, 0.5 �m), and (1.6 �m,
1.6 �m). Figures 21 and 22 show the crack propagation and maximum principal stress contours for the two-
and three-bubble cases, respectively. Unlike the one-bubble case in which cracks propagate to a free surface,
crack propagation in cases involving multiple bubbles is strongly affected by bubble locations. Cracks prefer
to form between those bubbles that are positioned the closest to each other. It is clear connected cracks and
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Figure 20: Radius = 0.5 �m; external pressure = 60 MPa: (a) Pressure history. (b) Crack propagation. (c)
Maximum principal stress.

bubbles form a large fragment at the lower-left corner in both Figures 21 and 22. Such fragments consist of
multiple grains, and their sizes are determined by the bubble spatial distribution.

(a) (b)

Figure 21: Two-bubble case: (a) Crack propagation; (b) Maximum principal stress.

4.3.3 Partial HBS
In this section, we use the output from the HBS formation simulations as our initial condition. In this case,
the initial condition is generated from the phase field simulations that explicitly model the defect evolution
and recrystallization behavior leading to HBS formation. A detailed description of the model can be found
in [9]. Considering that fragmentation has been observed in partially recrystallized zones, we focused on the
fracture behavior of the partial HBS obtained from these simulations. Three HBS at different recrystallization
stages with 25%, 60%, and 100% recrystallization fraction were considered. A linearly increasing pressure
was applied. For all three cases, crack initiation occurred at around 60 MPa, thanks to their similar bubble
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(a) (b)

Figure 22: Three-bubble case: (a) Crack propagation; (b) Maximum principal stress.

sizes. Crack initiation locations varied among the three cases, since more grains form around the bubble
during recrystallization and their points of intersection with the bubble can become possible initiation sites.
In addition, the recrystallized grain structures change the grain boundary morphology, thus altering crack
propagation directions and paths.

(a) (b)

Figure 23: 25 % recrystallization stage: (a) Crack propagation; (b) Maximum principal stress.
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(a) (b)

Figure 24: 60 % recrystallization stage: (a) Crack propagation; (b) Maximum principal stress.

(a) (b)

Figure 25: 100 % recrystallization stage: (a) Crack propagation; (b) Maximum principal stress.
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4.4 Pulverization Criterion Determination
The macro-scale pulverization behavior is approximated by using periodic boundary conditions (PBCs).
PBCs are useful to avoid boundary effects caused by finite size and make the system deform like an infinite
one. In MOOSE, the global strain system was implemented to enforce the PBC [63]. The global strain
system is capable of capturing the deformation with applied loads while still maintaining the periodicity. A
PBC example is shown in Figure 26, where the crack patterns are periodic and different sizes of fragments
are observed.

Figure 26: Crack propagation with PBC.

Our phase-field fracture models were used to develop a BISON pulverization criterion based on the
bubble pressure. Pulverization occurs when the bubble pressure exceeds the critical value. The function of
the critical bubble pressure is taken as

P crg = [a + b(�cr − 130)](1 − p) − cPext (82)

where �cr(MPa) is the critical fracture stress, p is the porosity, Pext(MPa) is the external pressure, and a,
b, and c are fitting coefficients. To determine those coefficients, we performed a series of simulations with
different values of porosity, critical stress and external pressure. Figure 27 shows five initial configurations
with different bubble distance ranging from 1.1 to 1.7 �m. The porosity is calculated as �r2∕(2l)2, where r is
the bubble size of 0.5 �m and l is the bubble distance. The external pressures of 0 MPa, 30 MPa and 60 MPa
are applied at all boundaries as shown in Figure 28. Due to uncertainty in determining the critical fracture
stress for high-burnup UO2 from macroscale data on porous samples, we consider three critical fracture
stress of 130, 160 and 200 MPa. The pressure inside a bubble results in a circumferential tensile stress in
the matrix. When this tensile stress reaches critical fracture strength, cracks will initiate at the bubble/matrix
interface. The critical pressure values extracted from all simulations are provided in Tables 4, 5, and 6 for
critical stress of 130MPa, 160MPa, and 200MPa, respectively. The implementation in BISON of a function
that is fit to this data is described in Section 5.

42



Figure 27: Initial configuration with different bubble distances.

Figure 28: Periodic boundary conditions with external pressure loading.

Pext(MPa)
Porosity 0.162 0.126 0.100 0.082 0.068

0 104 108 112 114 116
30 132 140 144 148 164
60 164 168 172 176 180

Table 4: Critical pressure values for �cr = 130MPa.

Pext(MPa)
Porosity 0.162 0.126 0.100 0.082 0.068

0 112 120 124 124 128
30 144 152 152 156 160
60 172 180 188 188 192

Table 5: Critical pressure values for �cr = 160MPa.
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Pext(MPa)
Porosity 0.162 0.126 0.100 0.082 0.068

0 128 136 140 144 148
30 156 168 168 172 176
60 188 196 200 204 208

Table 6: Critical pressure values for �cr = 200MPa.
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Figure 29: Geometry used to determine pulverization criteria for BISON using both analytical and phase-
field fracture approaches. A 0.5 �m radius bubble is in the center of the simulation domain, surrounded by
restructured grains with average grain radius 85 nm. Periodic boundary conditions are used.

5 BISON PULVERIZATION MODEL

5.1 Introduction
Based on the models and results described in this report, a mesoscale-based criterion for pulverization of
high-burnup UO2 fuel has been implemented in BISON. This has been implemented as a material property
called UO2PulverizationMesoscale. Pulverization criteria based on both an analytical formulation and
phase-field fracture simulation results are available. For both criteria, a simplified geometry of the HBS
region is assumed, comprised of a single bubble surrounded by the smaller grains that result from HBS for-
mation (see Figure 29). Periodic boundary conditions are used to enable this simulation domain to represent
a periodic arrangement of these bubbles. This also allows the model to account for interactions between
bubbles, the importance of which was discussed in Section 4.3.2, albeit in a limited way because it does
not allow for variations in spacing between bubbles. The bubble radius used for both criteria was based on
the most frequently observed bubble radius in experiments, 0.5 �m [64]. The domain size is varied while
maintaining a constant bubble size to consider the effect of variation in porosity.

To determine whether pulverization occurs, the UO2PulverizationMesoscale material calculates the
current pressure in the bubble Pg and compares it to the critical pressure for pulverization, P crg . P crg is
determined based on either the analytical or phase-field fracture criterion, whichever is selected by the user.
The details of these calculations are given in the following sections. Additionally, it is assumed that the local
volume fraction of HBS formation must be greater than a threshold value in order for pulverization to occur.
This value is currently assumed to be 50%, but future mesoscale simulations will be used to better quantify
this threshold. If Pg > P crg and the local HBS volume fraction is greater than the threshold, pulverization is
deemed to have occurred, and the material property pulverized is changed from 0 to 1.

5.2 Bubble Pressure Calculation
The UO2PulverizationMesoscalematerial calculates the current pressure in a representative 0.5 �m bub-
ble based on a reference pressure P0 and temperature T0 at the onset of HBS formation. Based on the results
of Section 2, a reference pressure of 123 MPa and temperature of 1200 K are suggested as an initial estimate;
however, P0 and T0 are user-adjustable parameters to allow for future results to be incorporated easily into
the model.

Based on the results of Section 3, it is assumed that during a LOCA transient, the size of the bubbles

45



does not change, so the density of gas within the bubbles is also unchanged. In that case, the current pressure
in the bubble can be calculated using a relationship derived from the van der Waals equation of state as

Pg =
P0T
T0

(83)

5.3 Analytical Pulverization Criterion
The analytical criterion for pulverization is based on an expression that was originally developed for frag-
mentation along grain boundaries for lenticular bubbles in UO2 [65]. Because pulverization is predominantly
observed to occur in regions where the HBS in UO2 fuel has formed, this model has been adapted to apply
to the morphology of bubbles in the HBS region, which are approximately spherical. In this model, P crg is
given by:

P crg =
2
r
+
�crgb(1 − �2) − �H

�2
(84)

where  is the surface tension of the bubble-fuel interface, r is the bubble radius, �crgb is the critical fracture
stress of the grain boundaries intersecting the bubble, �2 is areal fraction of the grain boundary occupied
by the bubble, and �H is the local hydrostatic stress. In applying this equation, it is assumed that there is a
uniform array of the statistically most likely bubbles, and that a flat grain boundary intersects each bubble;
this neglects the more complex actual morphology of the bubbles and of the grain boundaries in the HBS.
The fact that the actual grain boundaries are more complex and require the crack to change direction as it
propagates may cause the analytical model to underestimate the actual stress required for fragmentation.

Given the assumed geometry, �2 can be calculated from the local porosity in the HBS structure, p, using

�2 =

(

3p
√

�
4

)2∕3

(85)

 is given by (0.85−1.4×10−4(T −273.15)) J/m2, where T is in K [66]. �crgb is assumed to be 130 MPa [56].

5.4 Phase-field Fracture Simulation-based Pulverization Criterion
As described in Section 4, a function of the form

P crg = [a + b(�cr − 130)](1 − p) − cPext (86)

was used for the pulverization criterion. The values of a, b and c are fit to the data in Section 4 using Python’s
curve_fit function. The fitted function of critical bubble pressure is given as

P crg = [124.17 + 0.4386(�cr − 130)](1 − p) + 1.018Pext (87)

where pressures and stresses are given in MPa. The fitted function and simulation data are plotted in Fig-
ure 30. A linear trend is observed for all the input parameters.
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Figure 30: Fitted function with: (a) different external pressure; (b) different critical fracture stress.
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6 OVERALL CONCLUSIONS AND FUTURE WORK

In this work, mesoscale simulations have been used to develop and parameterize a mechanistic model for
pulverization in BISON. The function used in fitting the phase-field fracture simulations appears to repre-
sent the data well. However, the model predictions of pulverization have yet to be used in integral BISON
simulations of LOCA transients and compared to experiment using BISON validation cases. The critical
step of applying the pulverization model in validation cases will be completed in a separate milestone by the
end of FY-21.

In addition, the individual mesoscale models described in this report should be validated against exper-
iments. Initial comparisons of the microstructures predicted by the model of Section 2 to experiments have
been performed, and the results are encouraging; however, more quantitative assessment is needed. The
pressure of gas bubbles in the HBS structure predicted by the models of both Section 2 and 3 should also
be validated against experimental data. Currently, to our knowledge, no data is available on the pressure of
bubbles in the HBS region; the need for such data has been communicated to experimental collaborators
working in the Advanced Fuels Campaign (AFC) program.

Another pressing data need for improvement of the model is better estimates of c and �c for the phase-
field fracture model. The current value of c used is an assumption only. The value of �c currently used is
based on an extrapolation of data from porous large-scale samples back to zero porosity. Initial data from
collaborators in the AFC program have suggested that �c could be much larger than the value currently used.
In future work, atomistic and experimental work should provide improved estimates of these properties.

Finally, atomistic simulations have shown that additional defect species that are not included in the mod-
els here, such as interstitials, may have an important effect on the microstructural evolution. Additionally,
clusters of defects may play an important role in transport because such clusters are energetically favorable
to form, and the mobilities of such clusters may be significantly different from the individual defects that
comprise them. Strategies to incorporate such defect clusters into the phase-field models will be developed
in future work.
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